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Chaos and threshold for irreversibility in sheared
suspensions
D. J. Pine1,2, J. P. Gollub1,3, J. F. Brady4 & A. M. Leshansky5

Systems governed by time reversible equations of motion often
give rise to irreversible behaviour1–3. The transition from revers-
ible to irreversible behaviour is fundamental to statistical physics,
but has not been observed experimentally in many-body systems.
The flow of a newtonian fluid at low Reynolds number can be
reversible: for example, if the fluid between concentric cylinders is
sheared by boundary motion that is subsequently reversed, then
all fluid elements return to their starting positions4. Similarly,
slowly sheared suspensions of solid particles, which occur widely
in nature and science5, are governed by time reversible equations
of motion. Here we report an experiment showing precisely how
time reversibility6 fails for slowly sheared suspensions. We
find that there is a concentration dependent threshold for the
deformation or strain beyond which particles do not return to
their starting configurations after one or more cycles. Instead,
their displacements follow the statistics of an anisotropic random
walk7. By comparing the experimental results with numerical
simulations, we demonstrate that the threshold strain is associ-
ated with a pronounced growth in the Lyapunov exponent
(a measure of the strength of chaotic particle interactions).
The comparison illuminates the connections between chaos,
reversibility and predictability.
The time reversibility of simple shear flows at low Reynolds

number (Re) is demonstrated in a film by Taylor8. A drop of dye is
placed in a fluid in the gap between concentric cylinders (a con-
figuration known as circular Couette flow) and the inner cylinder
rotated many turns. The drop seems to disappear as it spreads into a
thin filament, but is reconstituted almost without change (except for
slight blurring due to brownian motion) when the rotation is
reversed. This behaviour is consistent with the time reversibility of
the dynamical equations—the Stokes or ‘creeping flow’ equations4—
that govern low Re flow. The same is not true for three-dimensional
steady flows, which can exhibit chaotic advection and irreversibility9.
The reversible creeping flow equations also govern the low Re

behaviour of a suspension of non-brownian particles (that is,
particles too large to exhibit significant thermal motion). However,
it was recently shown that in the creeping flow limit, the particle
trajectories are chaotic10: that is, the suspended particles exhibit
sensitive dependence on their initial (or current) positions.When the
particle motion is described in a configuration space spanned by the
3N particle coordinates, nearby trajectories (in phase space) separate
exponentially in time at a rate given by a positive Lyapunov exponent,
l. An earlier numerical study of only three particles falling through a
viscous fluid also reveals chaotic particle dynamics11. Thus, chaos is
an intrinsic property of low Re flow of non-brownian suspensions.
In chaotic dynamical systems, trajectories are extremely sensitive

to small perturbations from the deterministic paths dictated by

the dynamical equations. Since small perturbations are inevitably
present, chaos may make it impossible for the system to retrace its
microscopic dynamical path when reversed. Equivalently, chaos plus
perturbations (noise) may lead to a loss of predictability after a finite
time horizon12. Normally, these properties are inferred from numeri-
cal solutions, since it is generally not possible to reconstitute the
initial conditions in a real experiment, slightly perturb the system,
and then follow its subsequent evolution. For a lowRe non-brownian
suspension, however, reversing the boundary motion is equivalent to
reversing time. Thus, we have a unique opportunity to test the limits
of reversibility and predictability experimentally: we can undertake a
quantitative version of Taylor’s experiment and measure the degree
to which particles return to their initial positions.
Previous experimental13–17 and numerical18,19 investigations show

that the trajectories of non-brownian particles exhibit irregular and
apparently random displacements, or effective diffusion, when a
suspension is sheared unidirectionally between concentric cylinders
with the inner one rotating (circular Couette flow). The origin of
this irregular motion lies in the interactions between particles
mediated by the fluid. Such interactions have been shown to produce
a variety of important effects in suspensions, strongly affecting
sedimentation20,21, and causing particles to cluster22. However,
the question of whether or not particle trajectories are reversible in
one-dimensional shear flows has not been addressed experimentally.
Here we report a study of reversibility, which is made by straining a

viscous suspension periodically in circular Couette flow. The time
dependence of the strain g, defined as the ratio of the azimuthal
displacement of the inner cylinder to the width of the gap between
the cylinders, is given by gðtÞ ¼ g0 sinqt; where q is the angular
frequency of flow reversals and t is the time. The strain amplitude g0

is typically in the range 0.5–12. Straining the system to strain
amplitude g0 evolves the system forward in time; by reversing the
flow in the next quarter cycle, we can check to see if the particles
return to their initial positions. Repeated sampling over many
periods constitutes a severe test of reversibility, and allows the
behaviour to be characterized statistically.
The suspension is composed of spherical polymethylmethacrylate

(PMMA) particles of diameter d¼ 230^ 20mmdispersed in amulti-
component fluid at a volume fraction f in the range 0.1–0.4. The
concentrations of the fluid components are adjusted23 to match the
density of the spheres (to avoid settling) and refractive index (to make
the suspension transparent). A small number of particles are dyed
black so that their positions can be tracked. The period of rotation is
5–100 s, and Re, based on the gap and the maximum fluid velocity, is
held fixed at 0.001. Therefore, the low Re description applies.
Once oscillatory shear flow is established, the suspension is

illuminated and the positions of the dyed particles recorded once
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per cycle using a camera and frame grabber. The total accumulated
strain experienced by the particles over a run (taken to be positive at
each instant) is g; 4g0n; where n is the number of cycles, because
the strain is g0 in each quarter cycle. To study the particle motion, we
use tracking software24 to locate the dark particles, whose coordinates
x (along the direction of rotation) and z (along the cylinder axis) are
tracked over the duration of the run. Sometimes particles are lost
from view, but we typically track 60 particles or more over a total
strain of 1,000 or so. This is ample to produce statistically accurate
results.
We begin by describing the behaviour of the 30% concentration

sample (f ¼ 0.30). When g0 is less than about 1, all particles return
to their original positions after each full cycle. On the other hand, if
g0 ¼ 2, the tracer particles fail to return by irregular amounts of
typical magnitude 0.6d each cycle. These displacements are shown in
Fig. 1a, and are larger along the flow (x) direction than along the axial
(z) direction. The irreversibility after a full cycle, while comparable to
the particle diameter, is substantially less than the typical displace-
ment within a cycle. Trajectories sampled over many complete
periods are shown in Fig. 1b; movies of both continuously and
periodically sampled motion may be found in the Supplementary
Information.
A statistical analysis of the motion, shown in Fig. 1c for f ¼ 0.40,

shows that the mean square particle displacements kDx2l and kDz2l
after an integral number of cycles, averaged over many particles, are
linear in the accumulated strain. The mean square displacements are
also linear in time for a given driving frequency and strain amplitude,
but what counts is the total strain. Data are essentially identical if Re
is increased by a factor of 5; this shows that residual effects of the fluid
inertia are not important. The anisotropy of shear flow leads to
different magnitudes for kDx2l and kDz2l. Anisotropy in particle
transport also occurs for steady shearing, and is a consequence of
‘Taylor dispersion’25.
We use these graphs of the mean square displacements to define

non-dimensional effective diffusivities Dx and Dz along x and z,
respectively, in the conventional way, but with total accumulated
strain replacing time:

kðDx=dÞ2l¼ 2Dxg ð1Þ

Equation (1) defines a dimensionless diffusivity that is independent

of the oscillation frequency, as we check empirically, thus allowing
diffusivities measured at different frequencies and strain amplitudes
to be compared meaningfully. Since the only natural time and length
scales (other than the container dimensions) are the r.m.s. strain rate
_grms and the particle diameter d, the dimensional particle diffusivity

Figure 1 | Particle displacements and trajectories. a, Particle displacements
in the x–z plane after one full cycle in a sheared suspension above the onset
of irreversibility, amplified by a factor of 6 for clarity (volume fraction
f ¼ 0.30, strain amplitude g0 ¼ 2). b, Some of the chaotic particle
trajectories. c, Mean square particle displacements kDx2l and kDz2l after n
full cycles as a function of the accumulated strain g¼ 4g0n for f ¼ 0.40 and
g¼ 2:0: The filled and open squares are the mean square displacements kx2l
and kz2l; respectively, obtained by averaging over particle trajectories such as
those displayed in b; the solid lines through the data are least squares fits
from which the diffusivities are determined. The fluctuations are
anisotropic, growing more quickly along the flow direction (x) than along
the axial direction (z). Experimental details: the diameter of the inner

cylinder of the Couette cell is 50 mm and the gap between the (concentric)
cylinders is 2.5 mm; thus, a strain of 1 corresponds to an angular
displacement of the inner cylinder of 5.78. The PMMA particles have surface
irregularities of only 2 nm, as measured by AFM. The fluid viscosity is 3 Pa s,
about 3,000 times that of water. The suspension floats on a layer of mercury
to eliminate end effects. The fractional accuracy of the phase at which the
camera and frame grabber are triggered is typically better than 0.001, but the
final results are not very sensitive to this quantity. We sample particle
positions near the instant of maximum particle velocity. The particle
displacements in the x and z directions after each full cycle are denoted byDx
and Dz, respectively.

Figure 2 | Experimental diffusivities. a, Experimental effective diffusivities
Dx (filled circles) and Dz (open circles) as a function of the oscillatory strain
amplitude, on a logarithmic scale for volume fraction f ¼ 0.40. The x and z
diffusivities both become negligible for g0 , 1. b, Diffusivities Dx on a
linear scale for three samples at different particle concentrations with linear
extrapolations to zero diffusivity: triangles, f ¼ 0.20; squares, f ¼ 0.30;
circles, f ¼ 0.40. Data for Dz are omitted for clarity but extrapolate to the
same values of the strain amplitude thresholds for the different
concentrations.
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D 0

x defined by the dimensional form of equation (1), kDx2l¼ 2D 0

xt;
must scale like D 0

x , d2 _grms:
The variation of the dimensionless diffusivities with strain ampli-

tude for the 40% sample is shown in Fig. 2a. The measurement
precision is about^10%. Both diffusivities become negligible (below
our noise level) for g0 , 0.8. They appear to saturate for g0 . 2,
though we cannot go higher than 3, where the large displacements
make tracking difficult.
Irreversibility occurs only above a well-defined threshold strain

amplitude, which depends strongly on the concentration of the
suspension. This is shown in Fig. 2b, where we plot the dimensionless
reversing diffusivities for three samples at different concentrations as
a function of g0. For f ¼ 0.40, the threshold is close to g0 ¼ 0.8, as
can be seen from the linear extrapolation drawn through the circles in
Fig. 2b, while for f ¼ 0.20, the diffusivity becomes measurable only
above g 0 ¼ 3.5. The strong concentration dependence of the
extrapolated threshold is shown in Fig. 3.
These experiments raise a number of interesting questions. For

example, what is the role of small imperfections and noise? Brownian
motionwould contribute displacements of only 10 nm in one period;
the particle roughness of 2 nm is much smaller than the particle
diameter (220,000 nm). Inertial effects have been shown experimen-
tally to be negligible. Geometrical imperfections could play a role, but
cannot explain a threshold.
Assuming that the particle interactions are chaotic and require

interactions between at least three particles, as shown by Jánosi
et al.11, a strong concentration dependence of the threshold strain
amplitude can be expected, since the probability of multiparticle
encounters, and their strength, both depend strongly on concen-
tration. Figure 3 shows that the threshold is roughly proportional to
f22 experimentally and that numerical simulations (described later)
show similar behaviour, though the data are limited.
Some insight can be obtained by comparing the experimental

results to numerical simulations. We adapt the method of stokesian
dynamics19 to simulate the reversing problem. Stokesian dynamics
(SD) is akin to molecular dynamics except that the interactions are
governed by the low Re or creeping flow equations. For sheared
suspensions of neutrally buoyant particles, SD solves the Stokes
equations for the fluid subject to the no slip boundary conditions
on the surfaces of force-free and torque-free particles, to determine
the particle velocities. The many-particle configuration x(t) evolves
in time (neglecting inertia at small Re) according to

dx

dt
¼ _gðtÞUðxðtÞÞd ð2Þ

where _gðtÞ is the instantaneous spatially constant shear rate and
UðxðtÞÞ are the configuration-dependent non-dimensional velocities
of the particles. The SDmethod determines U for a given distribution

of particles, and then uses equation (2) to evolve the particles in time.
At each time step U is computed anew as the particle configuration
changes.
Simulations are performed for N ¼ 512 identical spherical par-

ticles subject to a bulk shear flow u ¼ _gðtÞy êx; where êx is the unit
vector in the flow direction and y the spatial coordinate in the
velocity gradient direction. Periodic boundary conditions are used in
all three directions to minimize boundary effects19. A square-wave
protocol of period T is employed: for 0, t , T=2; _gðtÞ ¼ _g and for
T=2, t , T; _gðtÞ ¼2 _g; which is then repeated. Simulations are
performed for total accumulated strains g¼ _gt between 400 and
1,000 and for different strain amplitudes g0 ¼ _gT=4: (The factor of 4
makes the experimental and numerical definitions correspond; the
total strain per cycle is 4g0 in both cases.)
The positions of all particles are followed in time; their displace-

ments at the end of each period are recorded as a function of total
accumulated strain. The mean square displacements exhibit linear
growth with total strain at large total strain, just as in the experiments.
As shown in Fig. 4a, the simulations exhibit features similar to the

experiments; the effective diffusivities are within a factor of 2–4 of
the experiments, agreement that we consider reasonable given that
the sources of irreversibility are different in the experiments and
simulations. In particular, at small strain amplitudes (g0 , 1) the
diffusivities from simulation are very small and of the order of the
numerical accuracy of the calculations (which is limited by finite time
steps, resolution, and so on). Therefore only qualitative agreement
between simulation and experiment is expected.

Figure 3 | Threshold strain amplitudes for the onset of irreversibility as a
function of volume fraction. Experimental data, black diamonds; numerical
simulation, red diamonds; power law fit to data Cf2a; dashed line
(C ¼ 0.14 ^ 0.03, a ¼ 21.93 ^ 0.14). The threshold strain amplitudes are
determined from the linear extrapolations in Fig. 2b.

Figure 4 |Diffusivities and Lyapunov exponents. a, Numerically computed
diffusivities (red symbols; ‘num.’) and experimental diffusivities (black
symbols; ‘exp.’) for diffusion in the x (filled circles) and z (open circles)
directions as a function of strain amplitude g0 for f ¼ 0.40. In the
simulations, the diffusivity Dy (not shown) in the y or velocity-gradient
direction is also determined and is found to be intermediate between Dx and
Dz. The reversing experiments for Dz at large strain amplitude compare well
to steady shear simulations (dashed line), as is expected. b, Numerically
computed Lyapunov exponent l versus strain amplitude g0. The rapid
growth of l with increasing g0 mirrors the rapid growth of the diffusivity in
a, and shows that particle trajectories become increasingly sensitive to small
perturbations as the strain amplitude increases. The values of l for the
reversing experiments approach the steady state value (dashed line) at large
strain amplitude, as is expected. The error bars indicate the standard
deviations found from fits to dðtÞ, expðl _gtÞ.
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The most significant deviation between the simulations and the
experiments is for the effective diffusivity at strain amplitudes
beyond 2 (recall that the experiments are limited to strain amplitudes
below 3 for the most concentrated samples). The experimental
diffusivities appear to level off sooner for g0 . 2, which may be
due to the finite gap size in the velocity gradient direction (,11d)
limiting particle excursions; in the simulations, the periodic
boundary conditions allow the particles to wander off to infinity in
all three directions.
Both the experiments and simulations exhibit a strain amplitude

threshold below which the diffusivities drop dramatically. Experi-
mentally, the critical strain amplitude rises from about 1 for f ¼ 0.3
or 0.4 to more than 10 for f ¼ 0.1, while in the simulations the
threshold is somewhat higher, but still consistent with the f22

scaling mentioned earlier. Some insight concerning the origin of
the rapid onset of diffusion with increasing strain amplitude can be
gained by examining how rapidly small perturbations are amplified
in an oscillating shear flow. To do this, we compute the evolution of
two nearby 3N particle trajectories and determine their separation
dðtÞ in configuration space (spanned by all the 3N particle coordi-
nates) following themethod of Drazer et al.10. From a pair of SD runs,
we find that nearby trajectories separate exponentially in time (or
accumulated strain g¼ _gt) with a positive Lyapunov exponent l
defined by dðtÞ, expðl _g tÞ:These simulations reveal a rapid increase
in l with strain amplitude g0, as shown in Fig. 4b, paralleling the
behaviour of the diffusivities. The particle trajectories thus become
increasingly sensitive to small perturbations as the strain amplitude
increases; this supports the conclusion that the chaotic nature of the
hydrodynamic interactions between particles leads to the observed
irreversible behaviour.
The experiments show that the hydrodynamic interactions can

lead to either reversible or irreversible motion, depending on the
amount of deformation that is imposed on the suspension. Our
numerical results demonstrate that the onset of irreversibility with
increasing strain amplitude is associated with the rapid growth of
the Lyapunov exponent, which measures the sensitivity of particle
trajectories to small perturbations. It is striking that the onset is so
marked and that it occurs at relatively small strain amplitudes in
concentrated suspensions. Although the creeping flow equations
are deterministic, the time (or strain) horizon of predictability is
therefore quite limited, extending only out to a total strain of about
unity (for concentrated samples). For larger strains, only a statistical
description is possible, although important statistical quantities such
as the diffusivities can be predicted from numerical solutions to the
equations of motion.
These experiments and simulations provide a detailed picture of

the onset of irreversibility, the loss of predictability, and the passage
from a detailed deterministic description of a many-body dynamical
system to a useful statistical description. Whereas some chaotic
systems remain reversible for large relative displacements when
accurately computed—for example, systems of planets or
moons26—suspensions become irreversible and unpredictable after
quite small relative displacements. The large number of interacting
particles may be responsible.
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