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Abstract. – The progression of a liquid inside a porous medium often involves two macroscopic
fronts: a main one, at the bottom, which saturates the medium; and a much thinner one, ahead,
which propagates using the fine structures of the porous material. We discuss here different
characteristics of this precursor. We show in particular how it can move faster than the main
front, although it follows confined paths. We also describe its dynamics, and compare our
results with different experimental situations.

Diffuse fronts in impregnation experiments. – In many cases, the impregnation of a
porous medium (such as paper, fabric, or powder) is well described by a diffusive-type law:
the impregnated distance increases as the square root of time. This law also describes the
progression of a liquid index in a capillary tube as long as gravity can be neglected, as shown
in 1921 by Washburn [1]. Thus it has often been proposed to treat a porous medium as an
array of parallel identical capillary tubes. But this very simple picture does not capture all
the characteristics of the imbibition. For example, the front is generally not sharp (as it would
be in an array of capillaries), but diffuse. This can be proved by measuring simultaneously
the weight of the paper and the apparent position of the front (two very common types of
measurement). We report in fig. 1 such an experiment, performed with a silicone oil (viscosity
η = 16mPa s, surface tension γ = 20.6mN/m and density ρ = 950 kg/m3) impregnating a
centimetric piece of paper (Whatman no. 4).

At the end of the experiment, the whole paper is impregnated (on the centimetric height
h0, to which there corresponds a mass m0). In fig. 1, the height of the visible front and the
mass are scaled by h0 and m0, respectively. Both laws are diffusive (and we can find in the
literature many similar results obtained by either one or the other of these techniques), but the
diffusion coefficients which can be deduced from the experiment are different: we find a larger
value (by typically 30%) for the visible front than for the mass of the liquid. This difference
can be interpreted by considering that liquid precursors are progressing ahead (they darken
the porous material, and thus are detected by the eye), while the large pores of the material
(which provide most of the mass, once saturated with the liquid) are filled more slowly.



J. Bico et al.: Precursors of impregnation 349

0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

h/h0 

m/m0 

1/ 2( )t s

20 40 60 80 100

visuel

force

Fig. 1 – Comparison between the progression of the liquid front (full diamonds) and the increase of
the mass (line), in a piece of paper put at t = 0 in contact with a wetting silicone oil. h0 is the height
of the sample, and m0 the mass of the liquid once the paper is fully impregnated.

This suggests that the liquid front is wide, as shown by Williams for similar systems [2]. In
Williams’ experiment, a long strip of paper is brought in contact with a bath of oil and removed
before the front reaches the end of the strip (thus, for h < h0). The stripe is then cut up in
small horizontal slices, which are weighed. Each mass is compared with the mass of a similar
slice saturated with oil, which allows to reconstruct the filling rate of the porous along its
length. Figure 2a shows the results of a similar experiment done with a paper in contact with
a bath during 1700 s, 5500 s, 11700 s and a whole night, to which there correspond (apparently)
impregnated lengths of 35mm, 53mm, 83mm and complete saturation, respectively.

Close to the bath (z small), the paper is fully impregnated. Further, a diffuse front is
observed, although a direct observation provides a very well-defined position h for the front.
(In the case of an anisotropic porous medium, the front h is also observed to be rough in the
direction perpendicular to the motion [3], which is not the case here.) The front width ∆h
increases throughout the liquid progression, and is found in fig. 2b to be linear in h, which
shows that both the laws are diffusive in time.

If the porous medium could be simplified in an array of similar tubes, the front would be
sharp. We propose here to study what happens when considering the polydispersity of the
pores, and restrict to the simple case of a porous medium constituted of two types of pores in-
terconnected with each other. This minimal description should mimic different practical cases:
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Fig. 2 – a) Mass of successive horizontal slices (height δh = 3mm) along a long strip of paper in
contact with a wetting liquid, as a function of the position z along the axis of progression of the
liquid; m is normalised by m0, the mass of this slice saturated by the liquid. The dashed lines
indicate the apparent position of the liquid front, for each experiment. b) Extension of the front
width as a function of its position, for the experiment reported in a).
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Fig. 3 – Rise in interconnected tubes (side view and cross-section): the liquid rises faster in the
smallest tube.

Fig. 4 – Cross-section of our experimental bidisperse model porous medium.

in a fabric, for example, both the intervals inside a yarn and between different yarns drive the
liquid [4]; in rocks, it is often found that macro- and microfissures coexist and participate in
the impregnation [5]; and even in very simple systems, such as assemblies of fibres or square
tubes, the liquid progresses both at the centre of the tube, and also along the corners [6].

Impregnation of a bidisperse medium. – Our model is sketched in fig. 3: two intercon-
nected tubes (radii R and r, r < R) are brought in contact with a bath of wetting liquid. The
liquid invades the tubes, and we suppose that the height at time t is not the same in both
tubes (difference ∆h). We also suppose that the height of the rises in both tubes remains much
smaller than the respective equilibrium height in these tubes, so that the effect of gravity can
be neglected. Note finally a key point, which is the permanent interconnection between the
tubes, as sketched in fig. 3: some porous media such as rocks should be better described by
considering junctions of small and large tubes (so-called pore doublets) reconnecting further,
which leads to quite different results [7].

If the tubes were not interconnected, the rise would be slower in the small one (∆h < 0),
because of the higher friction (the diffusion coefficient in Washburn’s law scales as the radius
r of the tube). But here the situation is quite different: the viscous dissipation inside the
small tubes is dramatically reduced, because the liquid there is pumped (thanks to a high
Laplace depression) out of the large sections. We denote as h and H = h − ∆h the heights
in the small and in the large tube, respectively. The flow rate can be neglected in the small
tube. Because of the difference between the two radii (r � R), the viscous loss in the large
tube can be written, according to Poiseuille law

∆P1 =
8ηH

R2

dH

dt
. (1)

The liquid there is mainly driven by the Laplace pressure in the large tube (2γ/R, in absolute
value), which leads to Washburn’s equation

H =
(

Rγ

2η

)1/2

t1/2. (2)

In the precursor column of extension ∆h and radius r, the liquid progresses with a mean
velocity dh/dt and the pressure loss due to viscous dissipation can thus be written

∆P2 =
8η∆h

r2

dh

dt
. (3)
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The Laplace pressure which draws this precursor is the difference between the pressures in
both tubes, and is (in absolute value)

∆P2 = 2γ
(
1
r
− 1

R

)
. (4)

Putting together the previous equations, we can deduce the height of the precursor, and its
variation as a function of time. In the limit r � R, it simply reads

∆h ≈
(

γ

2η
r2

R

)1/2

t1/2. (5)

Thus, ∆h is found to be positive (the liquid indeed progresses faster in the little tube), and
diffusive in time. Using eq. (2) in the same limit of contrasted radii, we find that the relative
gradation of the liquid front only depends on the tubes geometry:

∆h

h
≈ r

R
. (6)

This behaviour qualitatively agrees with the different data reported in figs. 1, 2 for real porous
media. This suggests that data in fig. 1 can be understood by considering that the darkened
zone corresponds to the filling of small precursor spaces, while the weight measurement mainly
implies the filling of large “tubes”. Thus, modelling a real porous medium by a bidisperse
network of tubes is a simple way for understanding behaviours which cannot be captured by
Washburn’s law.

Of course, our results hold only if both fronts progress. At larger heights, the front
in the large tube reaches its equilibrium height H0, which is classically given by a balance
between Laplace and hydrostatic pressures (H0 = 2κ−2/R for a wetting liquid, denoting as
κ−1 the millimetric capillary length). The liquid keeps progressing inside the small tube,
but the viscous dissipation associated with this flow is dominated by the friction along the
length ∆h (for ∆h > κ−2r4/R5), which yields a simple Washburn’s law in a tube of radius r
(∆h2 = rγt/2η). Thus, the progression in the small tube becomes much slower (the diffusion
coefficient is reduced by a factor r/R) than before, when the progression in these tubes was
enhanced by the filling of larger tubes below (eq. (5)).

Examples. – As an example, we achieved model bidisperse capillary tubes by introducing
a small fiber (radius of 170µm) in a larger tube (radius of 600µm), as sketched in fig. 4. The
interstice between the fiber and the tube inner wall is likely to play the role of a small tube.

In a first series of experiment, we introduced a slug of liquid (silicone oil, of viscosity
η = 16mPa s and surface tension γ = 20.6mN/m) at one end of such a horizontal tube, so
that the liquid only progresses along the interstice. We denote as h1(t) the position of the liquid
index in this case. In a second experiment, we brought the whole horizontal system in contact
with a reservoir of liquid, so that a liquid front could progress both in the tube and along the
interstice, with the respective positions H2(t) and h2(t). The results are reported in fig. 5.

In each case, the square of the position of the menisci is plotted as a function of time,
and all the data follow a diffusive-type law (h2 = dt). In the experiment with two fronts
(h2 and H2), the liquid indeed progresses faster in the smallest “tube”, and this progression
is itself much faster than when the same film is emitted from a fixed slug at the end of the
tube (position h1). Denoting the respective diffusion coefficients as d2, D2 and d1, and using
eqs. (2) and (5), we expect that d2 scales as R + 2r, D2 as R and d1 as r. Thus, these
coefficients are not independent, and we should have

d2 ≈ D2 + 2d1. (7)
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Fig. 5 – Progression of menisci in a horizontal tube such as sketched in fig. 4. If a slug is first
introduced in the tube, the liquid only progresses along the fiber (h1). If the tube is brought in
contact with a reservoir of wetting liquid, a meniscus moves in the tube (H2) and ahead of it, liquid
creeps along the fiber (h2), much faster than in case 1.

Fig. 6 – Double front in a porous capillary tube.

Experimentally, we find D2 = 137mm2/s and d1 = 34mm2/s, which yields for D2+2d1 a value
15% larger than the measured slope d2 = 177mm2/s. This agreement is quite satisfactory,
because our system is slightly more complicated than the model: the bidispersity is obtained
with a fiber instead of a second tube, which should introduce a numerical coefficient for the
equivalent tube. In addition, the limit r � R is not fully satisfied in our experiment.

More generally, a porous medium may be modelized as an assembly of tubes with a textured
(or rough) inner surface (fig. 6). It is reported in the literature that mesoscopic films can
progress in such textures [8–10], so that the surface roughness acts as a small tube connected
with the main one.

Let us consider an inner surface decorated with posts as sketched in fig. 6. The texture is
defined by its roughness α (ratio of the actual solid area over its projected one), its proportion
φS (surface area of the tops over the total surface area) and the depth δ of each post. The
energy variation dE associated with a progression dz of a film inside the texture is dE =
−γ cos θ(α − φS) dz + γ(1 − φS) dz, denoting as θ the contact angle. (The first term is the
interfacial energy gained by filling the inside of the texture, while the second one expresses the
interfacial cost of the liquid/vapor interface created as the film moves.) The film progresses
if dE is negative, i.e. if the contact angle is smaller than a quantity θc, given by cos θc =
(1− φS)/(α − φS) [10]. The pressure ∆P3 driving the film is derived from the relation dE =
−∆P3(1− φS)δ dz, which yields for a wetting liquid (θ = 0)

∆P3 =
γ

δ

α − 1
1− φS

. (8)

In a textured tube, a film can escape from a meniscus (as pictured in fig. 6) if ∆P3 is larger
than 2γ/R, i.e. if we have 2(1 − φS)δ < (α − 1)R —a condition which should be fulfilled
generally, if the surface is rough enough. Then, the film forms a precursor ahead of the main
front, and equations derived in the second section should describe its diffusion. On a scaling
point of view, the texture is equivalent to a small tube, provided we take as an equivalent
radius r the quantity δ(1 − φS)/(α − 1) (from eq. (8)). The progression of this film should
also modify the contact angle of the main meniscus, which is in contact with a solid filled
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with liquid [10]. Thus, in this (quite general) situation, the contact angle deduced from the
application of Washburn’s law would be different from the Young contact angle θ.

Conclusion. – Very usually, the impregnation of a porous material brought in contact
with a wetting bath is monitored indifferently by watching the liquid front or by weighing the
material. We have shown that both methods lead to a diffusive-type law, but with a different
diffusion coefficient: the optical front rises faster than the mass front. This behaviour was
interpreted by considering that at least two categories of channels (narrow and large ones) are
interconnected in the porous material: then, two distinct fronts diffuse, the precursor being
the front in the smallest pores which pump the liquid inside the larger ones. This discussion
stresses how delicate it can be to use Washburn’s law to characterise the wetting of a porous
medium, since this law indeed predicts a diffusive-type kinetics (and thus seems to agree with
a weight experiment, or an optical one, when done separately), but ignores the polydispersity
of the channels, and thus the possibility for a gradation of the front to take place. In addition,
the presence of a precursor may modify the apparent contact angle of the main front, and thus
(there again) lead to erroneous conclusions if using Washburn’s law for a contact angle mea-
surement. Conversely, these precursors might be used practically as indicators of the arrival
of a main front, or for generating in a controlled way gradients of matter in a porous medium.

For liquids which totally wet the material, the gradation of the fronts should be still more
complex, since microscopic wetting films also propagate, ahead from the fronts [11]. These
films can play an important role since they fix the driving force of the menisci, which progress
on them. They can also connect together different pockets of liquid in a disordered porous
medium, and control the transport properties. But they should not alter our conclusions,
because of their microscopic thickness —which makes them invisible and of negligible mass.
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