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ABSTRACT 

 The progressive break-up of an initially stable fluid column or thread into a 
number of smaller droplets is an important dynamical process that impacts many 
commercial operations from spraying and atomization of fertilizers and pesticides, to 
paint application, roll-coating of adhesives and food processing operations such as 
container- and bottle-filling. The progressive thinning of a fluid filament is driven by 
capillarity and resisted by inertia, viscosity and additional stresses resulting from the 
extensional deformation of the fluid microstructure within the thread. In many 
processes of interest the fluid undergoing break-up is non-Newtonian and may contain 
dissolved polymer, suspended particles, surfactants or other microstructural 
constituents. In such cases the transient extensional viscosity of the fluid plays an 
important role in controlling the dynamics of break-up. The intimate connection 
between the degree of strain-hardening that develops during free extensional flow and 
the dynamical evolution in the profile of a thin fluid thread is also manifested in 
heuristic concepts such as ‘spinnability’, ‘tackiness’ and ‘stringiness’. In this review 
we survey recent experimental and theoretical developments in the field of capillary-
driven thinning and break-up with a special focus on how quantitative measurements 
of the thinning and rupture processes can be used to quantify the material properties of 
the fluid. As a result of the absence of external forcing, the dynamics of the necking 
process are often self-similar and observations of this ‘self-thinning’ can be used to 
extract qualitative, and even quantitative, measures of the transient extensional 
viscosity of a complex fluid.  

 

KEYWORDS: Jet break-up; Necking; Capillary thinning; Extensional rheology; drop 
formation. 

 

1. INTRODUCTION  

The uniaxial extensional viscosity is a fundamental material property of a fluid 
which characterizes the resistance of a material to stretching deformations. For 
microstructured fluids, this extensional viscosity is a function of both the rate of 
deformation and the total strain accumulated. Some of the most common 
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manifestations of extensional viscosity effects in complex fluids are the dramatic 
changes they have on the lifetime of a fluid thread undergoing capillary break-up. The 
so-called “beads on a string” morphology that develops when a jet of a dilute solution 
of high molecular weight polymer undergoes capillary-driven thinning is a well-
known example of this phenomenon [1]. The process of break-up is driven by the 
action of capillarity, which seeks to minimize the interfacial energy of the free surface 
of a fluid thread, or ‘blob’, by formation of spherical droplets. This dynamical process 
can be very rapid, depending on the composition of the fluid, and viscous, elastic and 
inertial stresses may all be important in resisting the action of capillarity. In this 
chapter, we review recent experimental and theoretical developments in the field of 
capillary-driven break-up with a special focus on how quantitative measurements of 
the thinning and rupture processes can be used to quantify the material properties of 
the fluid. As a result of the absence of external forcing, the dynamics of the necking 
process are often self-similar and observations of this ‘self-thinning’ can be utilized to 
extract qualitative and even quantitative measures of the transient extensional viscosity 
of a complex fluid. However, the temporal evolution of the filament profile depends 
on the relative importance of viscous and elastic contributions to the stress and the 
capillary pressure within the fluid thread. In order to obtain useful material 
information, it is thus essential to understand this visco-elasto-capillary balance in 
detail. 

 

1.1 Application Areas 

In addition to its use in extensional rheometry, the progressive break-up of an 
initially stable fluid column or thread into a number of smaller droplets is an important 
dynamical process that impacts many commercial operations from spraying and 
atomization of fertilizers and pesticides, to roll-coating and food processing operations 
such as bottle-filling. The intimate connection between the degree of strain-hardening 
that develops during free extensional flow and the dynamical evolution in the profile 
of a thin fluid thread is important in a diverse range of free-surface flows and 
industrial processing operations such as those shown in figure 1. 

The retarded breakup of a high-speed fluid jet containing low concentrations of 
a high molecular weight additive (such as polyethylene oxide (PEO) in this case) is a 
well-known example [2] shown in figure 1(a), with applications in drag reduction and 
fire-hoses [3]. Food-stuffs frequently contain natural (or synthetic) biopolymeric 
‘thickeners’ which result in stringiness. Cutting an okra (a.k.a ‘ladyfinger’) in half, as 
shown in figure 1(b), ruptures the cell-walls and releases the cellular cytoplasm which 
stabilizes the formation of a thin thread as the two halves are separated. Figure 1(c) 
shows the ‘bag-break up’ atomization process in a fluid droplet of diameter 650 µm  
(containing 125 ppm of PEO; M ~ 2×106 g/mol) ejected from a nozzle into a high 
speed cross-stream airflow [4]. The stagnation pressure acting on the nose of the fluid 
droplet rapidly inverts and inflates it into a stretched fluid shell, which subsequently 
undergoes capillary breakup. The extensional stresses in the rapidly-stretched fluid 
sheet lead once again to thin threads and interconnected droplets. The level of fluid 
viscoelasticity  can   thus  be  used   to  control   droplet   size  and   airborne  chemical 
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Figure 1: Some common application areas that involve visco-elasto-
capillary thinning of a complex fluid; (a) breakup of a fluid jet at high 
Reynolds number, Re ≈ 35000, containing a small amount (100ppm) of 
polyethylene oxide solution (reproduced from Boger & Walters, 1993 
[2]; from an original image by Hoyt & Taylor, 1977); (b) biopolymeric 
fluid threads generated from the cellular matrix upon cutting an okra in 
half (image courtesy J. Bico, unpublished); (c) ‘bag breakup’ of a droplet
being atomized by a high-speed aerodynamic flow (reproduced fro

 
m 

Romagnoli et al. 2000 [4]); (d) forward roll-coating of three aqueous 
solutions of hydroxyethyl cellulose (HEC) with increasing molecular 
weight from left to right (reproduced from Fernando et al., Prog. Org. 
Coat (2001) [5]; (e) formation of a beads on a string morphology on a 
nano-scale following electrospinning of an aqueous polyethylene oxide 
solution (Fong et al., Polymer 1999 [6]). 

 

2 cm 20 µm 

(A) 

(c)(c)

(d)(d) (e)(e)

 3



dispersion. Figure 1(d) depicts the formation of strands during a high-speed forward 
roll-coating operation (at 152 m/min) with aqueous solutions of hydroxyethylcellulose  
(HEC). The thickness, length and lifetime of these strands increases from left to right 
with the molecular weight of the HEC. Measurements show that the subsequent 
formation of a ‘roll-mist’ from breakup of these threads is directly connected to the 
extensional viscosity of the fluid [5]. 

Viscoelastic effects can also be important on the microscale, and high 
molecular weight additives contribute to the stability of electro-spinning processes [6]. 
As indicated in figure 1(e), complex morphologies can arise depending on the relative 
balances of capillarity (which leads to droplet formation) and fluid elasticity (which 
tends to lead to filament formation). 

 The phenomena shown in figure 1 are commonly described in heuristic and 
poorly-quantified adjectives such as ‘spinnability’, ‘tackiness’ and ‘stringiness’ [7]. 
Additional specialized terms are used in other industries including ‘pituity’ in 
lubricious aqueous coatings, ‘body’ and ‘length’ in printing ink business, ‘ropiness’ in 
yogurts and ‘long/short textures’ in starch processing. Other common examples 
encountered in every-day life include the spinning of ultra-thin filaments of silk by 
orb-weaving spiders, the stringiness of cheese, the drying of liquid adhesives, splatter-
resistance of paints and the unexpectedly long life-time of strands of saliva. 

In each case, the material property embodied in the formation and lifetime of a 
filament is some specific measure of the transient extensional stress growth function 
for the fluid of interest as a function of the strain imposed and the strain-rate resulting 
from capillary thinning. Visual descriptions of early experiments with plant cytoplasm 
represent some of the first investigations of fluid extensional viscosity (or viscidity) 
and are described by D’Arcy Thompson (1961). Petrie [8] summarizes the early 
literature in his monograph, and detailed reviews of experimental techniques for 
measuring both the transient and steady-state extensional stress growth for mobile 
fluid systems have been provided by Gupta & Sridhar [9] and James & Walters [10]. 
The fundamental governing equations for these free surface flows are derived in detail 
in the books by Yarin [11] and Middleman [12]. In the present article we focus on 
recent developments in understanding the fluid dynamics of the process of visco-
elasto-capillary thinning and exploitation of such flows for extracting appropriate 
measures of the fluid’s resistance to stretching and breakup.  

 

2. DEFINITIONS AND PARAMETERS 

2.1 Background 

In a pinching thread, viscous, inertial and elastic forces can all resist the effects 
of surface tension and control the ‘necking’ that develops during the pinch-off process. 
The dominant balance of forces depends on the relative magnitudes of each physical 
effect and can be rationalized by a careful dimensional analysis of the problem. The 
results can be conveniently represented in schematic form as shown in figure 2.  
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 Figure 2: The operating space and important dimensionless parameters
for Visco-Elasto-Capillary Thinning and Breakup. 
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For bulk flows of non-Newtonian fluids the relative importance of inertial 
effects and elastic effects with respect to viscous stresses are characterised by the 
Reynolds number, 0Re Vlρ η=  and the Weissenberg number Wi V l , 
respectively. Here V and l are characteristic velocity and length scales for the flow of 
interest and ,ρ η λ  are the density, viscosity and longest relaxation time of the test 
fluid. Prototypical processing flows can be contrasted by their location in the back-
plane of figure 2. The relative magnitudes of inertial stresses and elastic stresses can 
also be related by the elasticity number 2

0El Wi Re lη λ ρ≡ =

El

, which is independent 
of the process kinematics and only depends on the fluid properties and the geometry of 
interest. For example, extrusion of polymer melts corresponds to , whereas 
processing flows for dilute polymer solutions (such as spin-casting) typically 
correspond to . Likewise free surface flows of Newtonian fluids can be 
characterised by the magnitude of the Reynolds number and the capillary number 

1>>

1<<El

0VCa η σ=  (where σ  is the surface tension of the fluid), and can be represented on 
the horizontal plane of the figure. The slope of trajectories in this plane is again 
independent of the imposed velocity and corresponds to the value of the Ohnesorge 

λ=

0 , 
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number, ( )2
0Oh Ca Re 2 lη ρσ≡ = , which may also be thought of as the inverse of a 

Reynolds number based on a characteristic ‘capillary velocity’ 0V σ η= . Other 
combinations of these dimensionless parameters may also be used; for example, 
studies of high-speed jet breakup are commonly reported in terms of the Weber 
number 2We ReCa V lρ σ≡ = . The onset of the bag breakup regime shown in figure 
1(c) then corresponds to the condition that the stagnation pressure at the nose of the 
droplet ( )2 2Vρ∼  exceeds the capillary pressure in the droplet ( )R2σ∼ ; or 
equivalently to a Weber number (based on the droplet diameter) 2 8V Dρ σDWe = ≥ .  

Inertialess flows of elastic fluids with a free surface are represented by the left-
hand vertical plane, and the combined importance of elastic and capillary effects 
compared to viscous stresses is measured by another dimensionless parameter which 
can be referred to as an elasto-capillary number, ( )0Ec Wi Ca lλσ η≡ = . Much less 
is known about flows in this plane. Bousfield et al. [13] were the first to study the 
nonlinear evolution of viscoelastic fluid jets and showed that increasing the 
elastocapillary number (denoted φ therein) resulted in strong stabilization of the jet. 
More recently, Spiegelberg and McKinley [14] and Rasmussen et al. [15] have 
investigated the effects of changes in Ec on adhesive fingering instabilities.  

 The three-dimensional interior of the parameter space shown in figure 2 
corresponds to general visco-elasto-capillary flows. It is worth noting that as interest in 
microscale and nanoscale manufacturing intensifies, and the characteristic length scale 
(l) of a particular process decreases, the elasticity number and elastocapillary number 
will both increase. Non-Newtonian effects in the processing of complex fluids will 
thus become increasingly prevalent. 

  The relative co-ordinates of a particular process or geometry can be specified 
by values of { . Since all three of these parameters vary with the 
characteristic process speed V, it is preferable to pick a single dynamical variable (say 
Re) and then specify the other coordinates using the material parameters, Oh and El. 
One final, particularly important, combination of parameters is the ratio 

}iRe , Ca, W

1 2 (El Oh lλσ ρ≡ = 3
0De 1 2) , which we define as a natural or intrinsic Deborah 

number for free surface viscoelastic flows since it represents the ratio of the time scale 
for elastic stress relaxation, λ, to the ‘Rayleigh time scale’ for inertio-capillary break-
up of an inviscid jet, 3(ρ σ 1 2)R =t l . Again it is worth noting that as length scales 
decrease, non-Newtonian effects in free surface flows of complex fluids will become 
increasingly prevalent. 

 

2.2 Prototypical Flow Configurations 

There are many possible free surface conformations that may be realized during 
the thinning and break-up of complex liquids. In the present review, we focus on three 
specific geometries that have been studied extensively and systematically. These 
simple prototypical configurations are shown in figure 3 and they may be conveniently 
distinguished from each other by the relative magnitudes of the imposed velocity V 
and the natural or intrinsic speed of a capillary wave in the system of interest; in the 
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 Figure 3: Three prototypical geometries for studying breakup of
complex fluids; (a) continuous jetting instability; (b) dripping from a
nozzle; (c) necking and breakup of a liquid bridge. 
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case of a low viscosity fluid (Oh < 1) this is given by 1 2( )Rσ ρ∼capV , or alternately, 
for a viscous fluid thread (Oh > 1), the relevant scale is 0capV σ η∼ . 

The motion of a continuous jet of fluid shown in figure 3(a) exiting a circular 
nozzle of radius  at a velocity V , leads to a progressive necking and 
breakup as the jet flows downstream. In a dripping experiment of the type shown in 
figure 3(b) the exit velocity is of the same order as the capillary wave driving the 
breakup process (V V ) and leads to the formation of a single hemispherical 
droplet at the exit of a small capillary tube of radius 

0R

cap

capV>>

∼
1 2( )capR l gσ ρ≤ ∼0

R z

)L , t

, followed 
by gravitational drainage and capillary-induced pinch-off. Finally, in the liquid bridge 
configuration of figure 3(c), the imposed velocity is zero (following the initial rapid 
formation of a liquid bridge constrained between two concentric and axisymmetric 
endplates) and the bridge evolves purely under the action of viscous, inertial and 
capillary forces. 

In each case the geometry is simple enough to be amenable to theoretical or 
numerical analysis of the time-evolving filament profile  and the flow can be 
controlled (at least initially until capillarity takes over) by motion of the end-plates or 
by controlling the supplied flow rate. Flows of Newtonian fluids in these geometries 
have recently been reviewed by Basaran [16]. The principal benefit of the third 
geometry is that the material element at the narrowest point or ‘neck’ (shown by the 
shaded elements in figure 3) remains located at approximately the same location in the 
laboratory reference frame; we denote the locus of this neck henceforth by 

. The fixed Eulerian location of the neck facilitates 
experimental measurement of the necking dynamics using either high-speed video-
imaging or a laser micrometer system.  

( ),t

( ) ( 00 5midR t R z .≡ =
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2.3 The Transient Extensional Viscosity 

Although the dimensionless parameters discussed in §2.1 provide useful 
information for comparing different fluids and flow geometries, the Weissenberg 
number and Deborah number do not provide accurate measures of the effective elastic 
tensile stresses that can develop in a fluid thread which is necking down and 
elongating under the action of capillarity. Mathematically, such flows are ‘strong’ 
extensional flows which result in large molecular deformations of the underlying fluid 
microstructure [17]. The dominant flow in the slender fluid column is typically 
irrotational due to the absence of solid surfaces (which usually result in ‘no-slip’ 
boundary conditions and associated vorticity generation). For flexible polymer chains 
this deformation leads to large elastic stresses. If we consider an initially cylindrical 
fluid element of characteristic size 0l R=  then the strain rate is given by: 

 ( ) ( ) ( )( )0ln2 2
d R t RdR t

t
R dt dt

ε = − = −� ,             …..…..(1) 

and the total deformation of the fluid element after the thread has necked down to a 
size R(t) that is given by the logarithmic or Hencky strain [18]: 

( ) ( ) ( )( )00 2lntt t dt R Rε ε ′ ′= =∫ � t

( )t

.              …..…..(2) 

 The actual stress in the filament can, in principle, be determined by numerical 
integration of a chosen viscoelastic constitutive equation with the known deformation 
profile . In many of the similarity solutions obtained for capillary thinning of 
slender fluid filaments (discussed in detail below in §4), the midpoint of the fluid 
filament is found to evolve according to a relationship of the functional form 

 where C and m are parameters determined from the analysis. For 
example: for the Newtonian fluid m = 1; for a Second Order Fluid m = 2 and for a 
power-law fluid the parameter m is the power law exponent n. The strain rate and total 
Hencky strain of the fluid element at the mid-plane are then given by the expressions:  

( )R t C=mid

ε�

0( )mt t−

 2( )mid
c

tε =�
( )

m
t t−

  and  02ln m
c

R
( t )

C( t t )
ε

 
=  

− 
.            …..…..(3) 

It can be seen that both the fluid strain rate and the total strain therefore diverge as the 
breakup event approaches. It is thus possible to probe the extensional properties of 
complex fluids under conditions far from equilibrium and far beyond those attained in 
conventional torsional rheometers. 

 Following early disappointing attempts at correlating measurements of the 
extensional resistance of polymer solutions in different elongational devices 
(summarized in [10]), it is now recognized that the extensional viscosity of a 
viscoelastic fluid is best represented as a function of the entire deformation history 
experienced by the material. 

To illustrate this, we consider for simplicity the particular case of the Oldroyd-
B model [19] and a constant deformation rate ( 0ε� ). The radius of a fluid thread (in the 
absence of surface tension) decreases according to ( ) ( )0 0exp 2midR t R tε= − � . If the 
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initial stress difference in the thread at time t = 0 is denoted ( )0 0 0
p p,zz p ,rrτ τ τ∆ = − , then 

the evolution of the tensile stress difference can be found analytically and is given by: 

)

0λε= �

0.5<

( ) 00 exp 2 (1 0.5 )
(1 0.5 ) (1 2

p
p ,zz p ,zz

2G Wi
Wi Wi

η ε
τ τ ε

 
= + − + 

− − 

�
,           …..…..(4) 

( ) 00 exp (1 1
(1 1 ) (1 )

p
p,rr p ,rr

G Wi )
Wi Wi

η ε
τ τ ε

 
= + − + − 

+ + 

�
 ,           …..…..(5) 

where pG =  is the elastic modulus, the Weissenberg number is Wi   and the 
Hencky strain is 0tε ε�= . After incorporating the additional Newtonian stress 
contribution from the solvent, the extensional stress growth function, or equivalently 
the transient uniaxial extensional viscosity, can then be represented in the form: 

η λ

 0
0 0

( )( )( ) 3 p,zz p,rrzz rr
E s,t

τ ττ τη ε η
ε ε

+ −−
≡ = +�

� �
 .             …..…..(6) 

Results are also often represented in dimensionless form as a transient Trouton ratio 
( ,ETr η ε η

2

+= � . 0 0)t

 For small Weissenberg numbers (Wi < 0.5) the last terms in equations (4 - 5) 
dominate; however at Wi = 0.5, the coil-stretch transition leads to unbounded stress 
growth in time. It can be seen from equation (5) that the radial stresses typically decay 
with strain (ε) for all Wi; however for Weissenberg numbers Wi > 0.5 the axial tension 
in a fluid filament grows without bound. It is this stress growth that results in the 
formation of fibrils and connecting ligaments observed in the images of figure 1. 

 Ultimately this stress growth is truncated by the finite extensibility of the 
molecules and can exceed viscous contributions to the stress by many orders of 
magnitude. This limit can be described by molecular models such as the FENE-P 
dumbbell model obtained from kinetic theory [20] and an additional finite extensibility 
parameter denoted L  herein. The axial stress growth for Wi >> 1 is then truncated at a 
maximum value given by:  

 ( )2
 0 02 1 0.5p,zz , max E p L Wi.τ η ε η ε= = −� � .. .                  …..…..(7) 

Finally, it can be seen from the expressions above that for Wi  the effects 
of any initial stresses decay, i.e. the fluid exhibits a ‘fading memory’ as normally 
expected for a viscoelastic fluid; however, for Wi ≥ 0.5, the initial axial stress does not 
decay but affects the flow at all future times. This is particularly important in the study 
of jet breakup – the effects of an upstream shear flow (for example in a pipe and 
nozzle) can significantly modify the dynamics of breakup. The role of pre-shear on 
extensional flow is not well understood yet and has only been considered by a handful 
of authors to date [21-23]. 

3. THE STABILITY OF FLUID JETS AND THREADS 

Our understanding of visco-elasto-capillary thinning and break-up has 
advanced significantly over the past 10-15 years, through the combination of careful 
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experimentation, numerical simulations of the governing equations and mathematical 
analysis of the stability of these equations. Some of the many papers in the area are 
collected in tabular form in table 1. This list is not intended to be exhaustive but rather 
highlights some of the key studies.  

As we discussed above, the number of material parameters influencing the 
evolution of a fluid thread or jet can be rather large (cf. figure 2) and systematic 
studies have therefore focused on specific parts of this parameter space. In table 1 we 
indicate which contributions to the total force balance on the elongating thread 
considered in each study control the dynamical evolution and necking of the thread. In 
the present section we focus on experimental and theoretical studies of the linear 
stability of jets and liquid bridges (denoted by LS in table 1). In §4 we proceed to 
consider the nonlinear evolution of fluid threads through the use of self-similar 
solutions to the equations of motion, as well as through simpler but approximate 
‘local’ analyses. These studies are denoted respectively by an SS and L in table 1.  

 

3.1 Linear and Nonlinear Stability of Jets 

 It has been known since the 1960s that the evolution of viscoelastic fluid jets 
may be substantially different to common experience with Newtonian fluids. Linear 
stability analysis [33] shows that the jet is less stable to perturbations than the 
corresponding Newtonian viscous jet (because the fluid stresses that resist disturbance 
growth are always retarded behind the instantaneous deformation). For weakly elastic 
fluids this can result in jet breakup lengths that are shorter than those observed with a 
Newtonian fluid [39]. However, for highly elastic solutions containing high molecular 
weight additives, nonlinear effects can rapidly develop in the extensional flow that 
evolves in the neck region and stabilize the breakup process. This leads to significantly 
enhanced jet breakup lengths and the development of a beads-on-a-string morphology 
[1]. Bousfield et al. [13] simulated the viscoelastic extensional flow of a free jet using 
the Oldroyd-B model and showed that the elastic stresses grow exponentially in the 
neck as a result of the ‘squeezing’ flow induced by the ever-increasing capillary 
pressure ( )midR tσ . They also showed that the evolution in the filament profile can be 
accurately described by a simplified one-dimensional set of slender filament equations. 
This greatly simplifies the analytical and computational complexity of the task. The 
resulting one-dimensional equation set can also be conveniently represented in 
Lagrangian form [37] and a number of similarity solutions incorporating capillarity 
and viscoelasticity as well as additional effects of inertia and finite extensibility have 
been studied by Renardy [36]. The structure and development of the associated 
methodology is summarized in last year’s Rheology Reviews 2004 [40] and discussed 
further in §4 below. 
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  An important result from numerical study of the necking process is the 
possibility of an elasto-capillary balance in the necking thread. The exponential 
decrease in the radius (and concomitant exponential increase in the capillary pressure 
in the cylindrical thread ( )capp R tσ∼ ), results in a constant strain rate (from equation 
(1)) and correspondingly an exponential growth in the axial tensile elastic stress (from 
equation (4)). Detailed analysis shows that the filament radius evolves in the form: 

( ) ( )
1/3

0 0

2 2exp 3     
3

mid mid
mid

mid

R t G dt
R R R dt

λ ε R
σ λ

 
≈ − ⇒ = − = 

 
�           …..…..(8) 

The necking process thus corresponds to a homogeneous elongational flow with 
2/3midWi λε= � = . Schümmer and Tebel [41] used this principle to motivate 

construction of a free jet elongational rheometer.  

The elasto-capillary balance and resulting exponential stress growth obtained 
with a quasilinear model such as the Upper-Convected Maxwell or Oldroyd models 
precludes the possibility of filament breakup [42]. Ultimately we expect two additional 
effects to modify the dynamics; (i) fluid inertia and (ii) finite extensibility of the 
dissolved macromolecules. The interplay of these effects governs the tendency of the 
elongating and thinning fluid thread to form satellite droplets. These smaller droplets 
are of great importance commercially as they affect the delivery of inks and fertilizers 
in spraying and inkjetting operations. Although the general principles controlling this 
process are now well known, a quantitative and predictive theory or analysis for 
viscoelastic fluids remains lacking at present.  

Simulations [13] of the size of the primary and secondary droplets resulting 
from the breakup of a Newtonian fluid jet as a function of the dimensionless 
wavenumber k π=  of the disturbance are in quantitative agreement with 
experimental data as shown in figure 4(a). As the wavenumber of the disturbance 
increases, the sizes of both the primary and secondary droplets decreases 
monotonically; however a secondary droplet is always observed.  

0R L

For the case of a dripping nozzle, Ambravaneswaran et al. [43] used a 1D 
slender-body approximation similar to that in [13] to develop a complete operating 
diagram for the formation of satellite droplets in terms of the Weber number and 
Ohnesorge numbers. Figure 4(b) shows that by careful choice of the fluid viscosity (or 
Ohnesorge number) it is possible to optimize the range of dripping velocities (or 
Weber numbers) for which no secondary droplets are formed. 

For polymeric jets there have been few quantitative comparisons of theory and 
experiment. Christanti & Walker  [44, 45] recently studied the droplet size 
distribution and jet breakup length for a series of aqueous polyethylene oxide (PEO) 
solutions. The jet was periodically excited using a piezo transducer element and the 
corresponding evolution of the jet was captured using high-speed video as shown in 
figure 5. As the molecular weight of the PEO solute increases, and elastic stresses in 
the fluid become increasingly important, the jet breakup evolves from the classical 
Rayleigh mode (which leads to formation of a primary droplet together with small 
secondary droplets as shown in the top frame) towards the ‘beads on a string’ 

 12



(a) Jetting (b) Dripping 
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 Figure 4: Formation of satellite drops during breakup of a Newtonian
liquid thread; (a) Dimensionless droplet sizes (scaled with initial jet
radius ) of the primary and secondary droplet size in breakup of a 
continuous Newtonian jet are shown as a function of dimensionless
wavelength of disturbance, 0k R Lπ= . Reproduced from Bousfield et 
al. JNNFM 1986 [13]; (b) operability diagram for a dripping nozzle 
showing the range of Weber numbers for which a satellite drop is/is not 
formed for different Ohnesorge numbers. Reproduced from
Ambravaneswaran et al. Phys. Fluids (2002) [43] . 

 

 

morphology shown in the lowermost frame. The wavenumber of the most unstable 
mode is clearly decreased with increasing fluid elasticity. 

  The authors also developed a phase diagram showing the range of fluid 
elasticities (as characterized by the longest or ‘Zimm’ relaxation time) and 
wavenumbers for which satellite droplets are eliminated (figure 5(b)). As the fluid 
elasticity increases, the range of wavenumbers for which the viscoelastic jet is able to 
suppress drop break grows rapidly. In dimensionless form, the elasticity of the 
polymer solutions is characterized by the intrinsic Deborah number  defined in §2. 
For a fluid jet exiting a nozzle of radius 0.25mm, the fluid with measured relaxation 
time of 0.5 ms (0.1% 3×105 g/mol PEO) corresponds to a Deborah 
number . For Deborah numbers below unity, elastic effects thus do not 
stabilize the jet and Newtonian-like breakup dynamics are observed. Very similar 
stabilization effects and suppression of satellite drops are also seen during the pinch-
off of PEO solutions dripping from nozzles [46, 47]. 

0De =

 

 



A 

B 

  

Figure 5: Effect of viscoelasticity on jet break up; (A) evolution in jet 
profiles due to a forced disturbance with wavelength  = 4.5; (a) a 
Newtonian 50/50 water/glycerol mixture; (b) 0.3% 100kg/mol PEO; (c)
0.1% 300kg/mol PEO, (d) 0.05% 1000kg/mol PEO, and (e) 0.043%
5000kg/mol PEO. Flow direction is from left to right and the image size 
is 20 mm x 2 mm; (B) Stability diagram showing conditions which
form satellites ( ) and conditions which form no satellites ( ) as a 
function of fluid relaxation time and wavelength of disturbance.
Reproduced from Christanti & Walker, J. Rheol, 2002 [45]. 
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(g) 

  

Figure 6: Numerical simulation of the formation a
beads on a string in an Oldroyd-B fluid; De0 = 212.1;
filament profiles at dimensionless times (scaled with 
tR) of t = 56.6, 141.4, 212.1, 353.6, 381.8 and 424.3;
profile as a function of axial position ( ); (h) d
axial force in the filament (scaled with surface te

0z / R

function of axial position. Reproduced from Li &
Fluids, 2003 [48].  

 

 

Recent advances in numerical methods that retain hi
of the free surface can now enable the nonlinear dynamics
simulated very accurately as shown in figure 6. A small (1%
to the initial jet profile and the one-dimensional evolution
Oldroyd-B filament are integrated forward in time [48]. T
growth of a large ‘primary’ drop and a smaller ‘secondary’ d
are the velocity field and stress distribution in the filament, w
6(g) and 6(h). The velocity profiles show regions of homogen
the threads (in which z midv zε= � ) interconnected by quas
drops. A detailed analysis of the force balance in the thread
force is not identically zero as initially assumed in early the
but in fact decays in time with the same exponential decay
cylindrical regions. The contributions of capillary pressure 
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axial segment of the beads-on-a-string morphology are different and depend on the 
entire evolution history of the respective fluid elements. Consequently, small force 
imbalances and the slow drainage of fluid from the cylindrical threads into the 
interspersed droplets can result in a prolonged coalescence phase as shown in figure 
6(a - f). Although the similarity between the experimental observations in figure 5 and 
numerical simulations is striking, a quantitative comparison between jet 
breakup/atomization experiments employing a well-characterized model polymer 
solution and numerical simulations with predetermined physical parameters has yet to 
be performed. 

The simulations in figure 6 are appropriate for a dilute solution of infinitely 
extensible macromolecules (which can be modeled as Hookean dumbbells and 
described by the Oldroyd-B constitutive equation); however in a real fluid, at long 
times the finite extensibility of the molecules must become important. Renardy [36] 
and Fontelos & Li [50] have shown that in this limit a self-similar necking process (see 
§4) develops in which the radius no longer decays exponentially, but linearly in time 
with ( )( )2mid E cR tσ η t≈ −  where Eη  is the steady elongational viscosity and  is 
the critical time to breakup. Interestingly it is found [50] that the precise value of the 
numerical front factor in this relationship depends on details of the specific 
constitutive model, and this suggests that studies of elasto-capillary thinning and 
breakup might provide sensitive probes of the extensional rheology of complex fluids 
at large strains. 

ct

1

 A recent theoretical stability analysis [35] has also shown that the elongated 
beads-on-a-string structure shown in the last frame of figure 6(a) may itself be 
unstable to a new mode of inertio-elasto-capillary instability. Numerical calculations 
showed that the neck region connecting the primary droplet to the elastically-
dominated cylindrical ligament is unstable to small perturbations, leading to an elastic 
recoil and formation of a smaller secondary droplet connected to the main droplet by a 
finer-scale ligament. This structure is then itself unstable to perturbations and this 
process of ‘iterated stretching’ repeats indefinitely (for an infinitely extensible fluid 
model such as the Oldroyd-B model), with a well-defined recursion relationship 
between the size of each generation of beads. Iterated instabilities in fluid threads of 
very viscous Newtonian fluids (Oh ≥ 1) have been observed previously [51], but due 
to the lack of a wavelength selection mechanism this instability does not lead to well-
defined arrays of beads. Although hints of this iterated process have been noted in 
some careful photographs of polymeric threads [35, 45] an iterated elastic instability 
has yet to be observed definitively in experiments with polymer solutions. As noted by 
Chang et al. [35] fluid inertial effects are also important in this iterated process; in 
order to ensure that the growth rates of the beads (which scale with ) are faster than 
the thinning rate of the primary elastic thread (which is given by ( 1)− ). A high 
molecular extensibility is also required in order to permit repeated stretching/recoil 
and multiple generations of droplets. Iterated stretching thus requires Oh << 1, 

 and  and is most likely to be observed in experiments with dilute 
solutions of very high molecular weight flexible polymers in a low viscosity solvent. 

0De → ∞1≥ 2L

Rt
−

3λ
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3.2 Static Stability of Liquid Bridges  

In addition to the infinite jet, the liquid bridge configuration shown in figure 
3(c) has become a common geometry for experimental studies of necking and break-
up of elastic fluids. In such a configuration, the rigid end plates impose no-slip and no- 
flux boundary conditions in the radial and axial directions respectively. The latter is 
straightforward to impose through a constraint of fixed volume and/or constant length; 
however the former boundary condition can not be represented in a simple one-
dimensional formulation of the type discussed in §3.1 [43]. Consequently studies have 
focused instead on the quasi-static stability of the liquid bridge; i.e. which 
configuration minimizes the interfacial energy of the fluid; a single deformed 
(typically non-cylindrical) column or two topologically-distinct fluid blobs with one 
attached to each end plate? Originally studied by Plateau [52], modern studies were re-
ignited by the work of Gillette & Dyson [53]. The literature in the area is extensive 
because the geometry is relevant to the ‘float zone’ process in crystal growth and the 
perturbative effects of gravity limit the uniformity and size of the float zone (see 
Coriell [54] for further discussion and the review of Meseguer et al. [55] for details of 
the present state of knowledge in the area).  

The static stability boundary for a fluid droplet of volume V bounded 
between two plates can be represented in the form shown in figure 7. The aspect ratio 
of the liquid bridge is 

0

0L RΛ =  and the dimensionless volume of the bridge 
(compared to the volume of a right-circular cylinder) is 2

0 0 0( )V R Lπ=
2S ,max

V . For V  
the maximum statically-stable length of a fluid column is 

1=
Λ π=  as first 

determined experimentally by Plateau [52] and theoretically by Rayleigh [56]. 
However for smaller or larger dimensionless volumes, the maximum length can be 
smaller or larger as shown in the figure. The stability boundary is comprised of three 
distinct segments (lines OD, DC, CO). The sketches of bridge shapes inset in the 
figure show the shape of the bridge at the loss of stability on each branch. 

As noted in Gaudet et al. [57] thread break-up experiments typically start with a 
cylindrical configuration and the total physical volume is held constant as the bridge is 
elongated axially. In the quasi-static limit of very slow displacement, this corresponds 
to a sequence of equilibrium states (denoted by a subscript S) which follow a 
hyperbolic trajectory through figure 7 (shown by the dash-dotted line) given by 

=V

S ,breΛ

. The bridge breaks when this hyperbola intersects the minimum 
 volume stability limit (the lower right-hand part of the stability curve) shown in figure 
7. This critical value will therefore depend on the initial aspect ratio (or equivalently 
the initial volume) of fluid column used. If we denote this functional relationship by 

 then the Hencky strain at break is ( )0lnbreak S ,breakΛ Λ= . An 
interesting question that does not appear to have been addressed to date is what is the 
initial aspect ratio that maximizes this strain to break? Preliminary calculations suggest 
that it is a hyperbolic trajectory with *

0Λ  ≈ 0.16, which intersects the minimum 
volume stability limit at  ≈ 0.57 corresponding to a stretch of *

S ,breakΛ
(ln 0.57 0.16 1.ak = ) 27=*

S ,breε . This trajectory also achieves a tangency condition 
with the lower left-hand part of the stability curve. 

0S SΛ Λ

0( )ak V S ,ε
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 Figure 7: Stability diagrams for static liquid bridges confined between
coaxial circular disks; (a) global stability diagram showing
dimensionless volume V  as a function of aspect ratio 0 02RL for 
Bond numbers of Bo = 0 (– – –) and Bo = 0.1 (–––). The bridge loses 
stability on the lower branch to a bifurcation into two identical (Bo = 0) 
or dissimilar size drops (Bo ≠ 0); On the upper branch the bridge loses 
axisymmetry; (b) Typical experimental data for Bond numbers

. Both figures reproduced from Slobozhanin et al. 0 1Bo≤ ≤ Phys. 
Fluids (1993) [58]. 
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If there is a gravitational body force acting along the axis then this causes the 
bridge to ‘sag’ and also affects the stability boundary [58]. Because of its importance 
in silicon crystal growth, this effect has been considered in some detail. Gravitational 
effects are parameterized by the Bond number 2

0Bo gR /∆ρ σ=  and even for Bo = 0.1, 
the domain of static stability decreases substantially as shown in figure 7(a). The 
resulting shape of the liquid bridge can be evaluated using a perturbation analysis for 
Bo << 1 [59, 60]. A bifurcation analysis can also be used [61] for small shape 
deviations and for small values of the Bond number to evaluate the shift in the stability 
locus and shows that the maximum aspect ratio for a given volume of fluid is: 

 ( ) ( )( )4/3 2/33 1
2 22 1 1     for  1S ,max Bo ..... BoΛ π≅ − + − + <<V ,          …..…..(9) 

However, for larger perturbations the solution must be found numerically. The results 
of a series of detailed theoretical calculations and microgravity experiments are shown 
in figure 7(b). 

  Most recent experimental studies of capillary thinning and breakup in polymer 
solutions utilize plates of radius 1 0R 6≤ ≤ mm and fluids with surface tensions in the 
range 30 70σ≤ ≤  mN/m; Bond numbers are consequently of order 0.1 – 10. Axial 
distortions in the initial liquid bridge shape are thus expected to be quite pronounced. 
The axial extent of a liquid bridge can be extended by an external axial flow [62], a 
yield stress in the fluid [63] and also by bulk or surface viscoelastic stresses (cf. figure 
8 in [64]). Of principal interest to the present review is the effect of dynamical stresses 
induced by axial stretching of the liquid bridge on the stability of the column. 
Experiments [65], stability analysis [66] and numerical calculations [57, 67, 68] show 
that this effect can be substantial. For a given value of the dimensionless volume V , 
the aspect ratio at break-up, or equivalently the total axial strain, 

0

( )0p breakL Llnε = , 
appears to increase monotonically with capillary number beyond the quasi-static limit 

; however there is no simple analytic theory to describe this stabilization. This 
dynamic stabilization of a liquid bridge has recently been proposed as the basis for a 
‘nano-rheometer’ [69]. 

0( )Sε V

 If the imposed endplate deformation increases exponentially with time then 
measurement of the force exerted by the elongating liquid column on the endplate up 
to the point of break-up can be exploited to probe the transient extensional viscosity of 
the fluid. Preliminary experiments of this type were performed by Kröger & coworkers 
[65, 70] in a Plateau tank (containing a neutral-density fluid) and also in microgravity. 
Unfortunately inertial effects in the outer fluid and limitations in the duration of 
microgravity time prevented large strains from being achieved. By shrinking the size 
of the endplates (to minimize gravitational effects) and through careful selection of 
force transducers and radius measuring devices, such transient elongational 
measurements are now possible in the laboratory using filament stretching extensional 
rheometers without the need for reduced gravity environments (at least for fluids with 
viscosities greater than approximately 0η ≥ 1 Pa.s) . Such instruments are beyond the 
scope of the present discussion but are reviewed in detail elsewhere [71]. 
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4. DYNAMICS OF NECKING THREADS AND EVOLUTION TO BREAK-UP 

 20

c

 In this section we focus on recent studies of the capillary-thinning and ultimate 
break-up of fluid threads far beyond the regime in which linear stability results are 
expected to be applicable. This field has been invigorated over the past fifteen years by 
the discovery of similarity solutions, which are valid for slender threads all the way to 
– and, in the case of viscous Newtonian fluids, even beyond – the singular point of 
break-up. Many of these developments are discussed in detail in the excellent review 
of Eggers [64] and the reader is referred there for mathematical details of the analyses 
for viscous and inviscid Newtonian fluids. Similarity solutions have also been 
discovered for the case of viscoelastic fluids, chiefly through the studies of Renardy 
[36, 37, 42] and have also recently been reviewed in Rheology Reviews 2004 [40]. 
What is perhaps less clear is how this plethora of expressions are inter-related or how 
they may be exploited by the rheologist to measure material functions and we thus 
focus on these issues here. Similarity solutions to the one-dimensional radially-
averaged form of the governing equations provide expressions for the velocity field 
and shape of the fluid thread which are valid not only for small perturbations to an 
cylindrical configuration but also for large disturbances that ultimately lead to a finite 
time singularity (at a time we denote generically t  henceforth) and a topological 
bifurcation of the filament into two distinct regions. The interconnection between the 
numerous published similarity solutions can be represented in graphical form as shown 
in figure 8.  

 The relevant similarity solution for a particular experimental configuration 
depends on the relative magnitudes of the visco-capillary, inertio-capillary and 
viscoelastic time scales denoted 0 0v Rt η σ= , 1 23

0( )R ρ σ=

0De

t R  and λ respectively. The 
earliest studies of capillary-thinning for an inviscid thread or sheet [24, 25] 
(corresponding to potential flow (PF) with Oh << 1, << 1) show that close to 
breakup the minimum dimensionless thickness 0( )min min th R R=  decreases as the 
breakup event approaches with a power-law of the form 2/3) )Rt t t−((min ch ~

0De
. 

Conversely, for a viscous Newtonian fluid (Oh >>1, 1<< ), the similarity solution 
obtained to the Stokes equation [27, 72] and analogous numerical simulations [73] 
show that the thread breaks linearly in time; and the midpoint radius decreases 
according to  

 ( ) -1

0 0 0

( ) 0.0709 0.0709min c
min c

R

R t t th t t Oh
R R t

σ
η

   −
≡ = − =   

  
.        …..…..(10) 

Later analysis has shown that this solution is only one of a countably infinite 
set; however all the other solutions are less stable to perturbations [28]. Eggers [26, 
64] showed that there is another important ‘universal solution’ which incorporates 
viscous, inertial and capillary effects in the necking filament. We might expect this 
solution to be appropriate when the Ohnesorge number becomes Oh ; 
corresponding to length scales 

1≈
2
0El ~ ( )η σρ .  When the expression for the thinning 

rate of the neck in this inertio-visco-capillary (IVC) solution is evaluated, it is found 
that it only differs from the visco - capillary (VC) expression  (equation (10)) by a 
numerical  coefficient  ( as  indicated  in  figure 8 ) and the neck radius again decreases 
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linearly in time (although it should be noted that in the IVC solution the location of the 
neck also translates slowly in the axial direction; whereas in the VC solution it is 
stationary). The fluid inertia does not appear in the expression for the necking rate 
because velocities are very small near the necking point. However at greater distances 
from the neck, the velocities become much larger and the IVC solution is strongly 
asymmetric, in contrast to the symmetric VC solution. Experiments and finite element 
simulations have shown the progressive cross-over from the inviscid PF solution to the 
IVC solution as viscous effects become important [74], and also from the symmetric 
VC to asymmetric IVC solution as the velocities in the neck diverge (according to 
equation (8)) and inertial effects become increasingly important [75, 76]. 
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On very small length scales, additional forces become important and these have 
also been considered. It has been shown [29, 77] that ultimately viscous effects in the 
surrounding fluid become important (even if the outer fluid has a viscosity ) 
and although the filament neck still decreases linearly with time, the shape of the 
filament in the neck region becomes conical and symmetric. If the viscosity of the 
outer phase is sufficiently large, analysis shows that the symmetric VC solution may 
crossover directly to this viscous-viscous balance without ever displaying the 
‘universal’ IVC solution [29]. Interestingly, it has been noted very recently that in the 
case of an inviscid inner fluid core surrounded by a viscous fluid ( 0η η ) that self-
similarity breaks down because the necking rate in the inviscid thread is faster than the 
time scale required any for surface reconfiguration [78], and the thread never forgets 
the initial experimental conditions. 

η η<<

i <<

Recent experiments [79] have shown that similarity solutions to the governing 
equations of continuum mechanics are valid down to remarkably small length scales of 
O(10 nm); however ultimately an additional length scale, corresponding to the 
wavelength of natural thermocapillary waves on the interface, 1 2( )T Bk T σl ~  
(typically a few nm) becomes important. Beyond this point, the additional fluctuating 
stresses in the momentum balance must be considered [30] and these modify the 
necking so that the minimum radius varies with the square root of time from 
singularity. 

  When elastic effects become important, the dynamics of necking change 
significantly due to the additional elastic stresses that grow exponentially with the total 
strain in the fluid thread. For the Maxwell/Oldroyd-B model this leads to an 
exponential decrease in the thread radius as we discussed above in §3 for the case of 
viscoelastic fluid jets. The crossover to this elastic-capillary balance is to be expected 
when the viscoelastic time scale (λ) becomes of the same order as the visco-capillary 
or inertio-capillary time scale, and this crossover has been observed in both numerical 
simulations [13, 34, 49] and experiments [46, 47]. Ultimately, finite extensibility 
modifies this solution and the precise form of the corresponding similarity solution 
then depends on the relative importance of inertia and also on the precise form of the 
constitutive model [36, 50]. The additional constitutive parameters arising from 
viscoelastic constitutive models preclude a convenient representation on a two 
dimensional plot such as figure 8. Two important limits can be noted however; 



(i) If the extensional viscosity approaches a constant value at large strain rates, 
then the corresponding tensile stress increases linearly with strain rate and the fluid 
acts like a highly anisotropic Newtonian fluid thread [34, 50]. As noted, in §3, the 
thread then necks linearly in time according to: 

 ( ){ }( ) ( )1
min 02 0.5E ch R t t Oh Trσ η −

∞≈ − = τ ,          …...….(11) 

0ETr η η=where ∞  is the limiting value of the Trouton ratio at large strains and 
Weissenberg numbers. The precise value of the numerical front factor depends on the 
specific constitutive model [36, 50]. Large Trouton ratios dramatically retard the 
thinning compared to the equivalent Newtonian visco-capillary solution given by 
equation (10). For intermediate levels of extensional thickening, however, the filament 
may be less stable than the corresponding Newtonian fluid, because the elastic recoil 
and unloading of a stretched filament accelerates the local decay in the neck region 
[80]. In either case, the filament remains slender and the most unstable modes are long 
wavelength disturbances. Recent molecular dynamics simulations with bead-rod 
chains show a similar gradual thinning and cohesive failure [81]. 

 (ii)  Conversely, if the extensional stress is bounded at large strains (so that the 
elongational viscosity decreases) then the thread may fail purely through an elastic 
mechanism with capillarity playing no role [36, 40]. In this limit the usual energetic 
arguments that preclude short-wave length disturbances in the presence of capillary 
curvature terms are not relevant and so the possibility of elastic-like rupture events (of 
the kind reviewed in [82]) is to be expected. This has been observed in numerical 
simulations of filament thinning using the Papanastasiou-Scriven-Macosko (PSM) 
integral model [83]. Although qualitative observations of rupture events have been 
made in numerous elongated polymer samples, careful comparisons of numerical 
simulations with high-speed video imaging observations, or attempts at directly 
connecting the dynamics of rupture with the form of the tensile stresses in the 
underlying constitutive model, have yet to be considered. 

 

5. CAPILLARY BREAK-UP EXTENSIONAL RHEOMETRY 

 The similarity solutions to the equations of motion discussed above show that 
the minimum radius of a fluid filament undergoing capillary-thinning (or ‘self-
thinning’) evolves in a well-defined fashion with a distinctive dependence on time and 
a numerical front factor that contains material property information. This suggests that 
observation of visco-elasto-capillary thinning in slender filaments might provide a 
good basis for an extensional rheometer. This idea was first employed by Schümmer 
& Tebel [41] using a high-speed jet configuration; however Entov & coworkers [84-
86] were the first to consider using the configuration of figure 3(c) in which a liquid 
bridge is stretched beyond its Plateau stability limit and then dynamically evolves 
under the action of capillary, viscous and/or elastic stresses. 

 In principle, the axial profile R(z,t) of the evolving filament can be digitized 
and analyzed; however, close to break-up, the profile changes rapidly in the necked 
region and high-speed video may be required. It is more convenient to use a laser 
micrometer or other optical device to measure directly the midpoint radius  of ( )midR t
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the neck. Suitable non-contact laser profilometry instruments have been developed 
commercially for the wire-gauging and fiber-spinning industries; common 
manufacturers include Omron, Keyence, Zumbach and Mitutoyo. Typical devices may 
have a spatial resolution of 10 µm and sampling rates as fast as 10 kHz or more [87]. 
By monitoring the rate of necking and comparing the measurements with the 
appropriate theoretical model, one can then extract rheological parameters that 
characterize the transient extensional properties of the test fluid. 

 Experimental measurements always enable the determination of the critical 
time to break-up (tc); and for many industrial operations (such as jet breakup, spray 
formation and atomization) this is the key parameter of interest. In addition, the 
measured evolution in the neck radius can also be converted into an apparent 
extensional viscosity function  ( )E , appη ε . Because the forces acting on the filament 
select a self-similar balance, the unknown viscous or viscoelastic stresses are in quasi-
static equilibrium with the capillary pressure (provided fluid inertia is not important, 
so that Oh ≥ 1). Using the definition in equation (1) we obtain 

 ( )
2 ( )

mid
E ,app

mid mid mid

R t
dR t dt

∆τ σ ση
ε ε

= = =
−� �

.          …...….(12) 

In general, both the strain and the strain rate are changing as the thread necks and it is 
thus proper to refer to this as an apparent extensional viscosity. The material function 
defined in equation (12) is, however, the relevant one for studying and understanding 
commercial processes involving jet and thread breakup. It is also worth noting that in 
addition to serving as an extensional viscosity indexer, numerous recent studies have 
shown that a capillary thinning and breakup device can, under certain conditions, 
measure the true extensional viscosity. Just as in a conventional torsional rheometer, in 
order to extract values for specific material parameters it is necessary to select an 
appropriate constitutive model that can be regressed to the data. A diagnostic guide of 
the most commonly-observed modes of capillary thinning and break-up is shown in 
table 2, and the rest of this section focuses on a discussion of the different modes of 
thinning that can be observed.  

 

5.1 The Force Balance on a Slender Filament 

 The expected form of the break-up profile can be obtained from a simplified 
one-dimensional form of the force balance on the thinning filament. In the limit of 
vanishing inertial effects, the governing equations can be integrated once to give a set 
of equations describing the forces acting on one-dimensional Lagrangian fluid ‘slices’. 
A detailed discussion of this approach and the connection with inherently one-
dimensional Cosserat models is given in [64, 88]. A Lagrangian formulation of the 
governing equations for fiber-spinning in the absence of surface tension and subject to 
a constant axial force is discussed by Yarin [11]; however, the appropriate system of 
equations for capillary-driven breakup of a viscoelastic fluid thread with a time-
varying tensile force was first discussed and analyzed by Renardy [37]. It has been 
shown that these one-dimensional equations can accurately reproduce full two-
dimensional, time - dependent,  simulations  with  both  the  Newtonian  and  Giesekus 
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constitutive equations [80]. As originally formulated, the equation derived by Renardy 
is written in terms of a Lagrangian stretch for each axial slice of the column defined 
as:  

( )22
0 0 0 0( ) ( )S Z ,t z Z R R z Z ,t≡ ∂ ∂ = ,          ……….(13) 

where denotes the Lagrangian position at time t of the one-dimensional fluid 
‘slice’ located originally at axial position 0Z  at time . In experimental 
measurements of the midpoint radius or in digitized video images of liquid bridge 
shapes as a function of time, the radial profile 

0t

( )0(R z Z ),t ,t  is the primitive variable. 
If the stretch S is eliminated from the slender filament equation using equation (13) 
and the equation is extended to incorporate the effects of higher order axial curvature 
terms [64] and also an axial gravity field zg= − δg we obtain the following stress 
balance: 

0( )z Z ,t

 F t
   

   
....…(14)    

0

, ,2

2
0 0

1/ 2 3/ 2 22 2

( ) 23

1                             ,
1 ( ) 1 ( )

z
s p zz p rr

Z

R
R tR

gR ZR R
R RR R

η τ τ
π

ρσ

 ∂    = − + −    ∂   
 

′′   + + − 
    ′ ′+ +    

 

 

where  and the terms on the right-hand side represent, respectively, the net 
viscous extensional stress, the non-Newtonian tensile stress difference, capillary 
pressure arising from radial and axial curvature and gravity. This equation can then be 
combined with algebraic or differential equations for the axial and radial stress 
components that are obtained from a particular constitutive model. The resulting 
equation set can be then be solved analytically or numerically. The net force in the 
filament is not zero but is independent of spatial position (i.e. the force along the 
filament is constant at any instant in time); it can thus be found by an integral 
constraint along the length of the evolving fluid column. Renardy [40] outlines a 
number of solutions that are valid in the limit that the last two terms capturing the 
higher order axial curvature and gravitational body force acting on the filament are 
negligible. 

( )R R z,t=

An even simpler zero-dimensional solution is possible if a further 
simplification is made: the fluid thread is approximated as an axially-uniform 
cylindrical column of constant radius  which is necking down under the action 
of a capillary pressure 

( )midR t
( )idR tcap mp σ=

( )

. The fluid ‘blobs’ at either end plate serve as 
quasi-static reservoirs which soak up the fluid drained into them from the necking 
region. They also alleviate the no-slip boundary condition which would otherwise 
induce a radial shear flow near the ends of the radially-contracting fluid thread. The 
line tension acting at the junction of the cylindrical surface and spherical blob then 
results in an axial force 2 (z )midF t R tπσ= . Substituting these expressions into 
equation (14) and neglecting the asymmetric driving force of gravity results in an even 
simpler approximate stress balance of the form: 
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 [ ]2 ( )3
( ) ( )

mid
s p,zz p ,rr

mid mid

dR t
R t dt R t

ση
 

− ≈ − − 
 

τ τ .         …...….(15) 

It can be seen from this expression that the capillary pressure ( )t  can be 
balanced by a viscous extensional stress ~  and/or by non-Newtonian 
contributions to the tensile stress difference in the column. It is this reduced zero-
dimensional form of the force balance that is studied in most theoretical and 
experimental work [34, 87, 89] and is used in obtaining the different analytic 
expressions given in table 2.  

3 ( )s mid tη ε�
midRσ

In the first row of table 2, we indicate schematically the distinctive features and 
qualitative profile of the liquid bridge. In the second and third rows of the table, the 
expected temporal evolution of the midpoint filament diameter for a number of 
constitutive models are shown. It can be seen that the functional form of the necking 
profile can be very different and in each case is directly connected to the form of 
extensional viscosity predicted by a given constitutive model. 

 

5.2 Elasto-Capillary Thinning of Dilute Polymer Solutions 

 Perhaps perversely, the elasto-capillary solution for a viscoelastic filament is 
easier to understand and validate experimentally than the corresponding expression for 
a viscous Newtonian fluid. This is because experiments (figure 5) and computations 
(figure 6) show that the approximation of an axially-uniform cylindrical thread is very 
good for a strongly-strain hardening fluid such as a dilute solution of a high molecular 
weight polymer. In this case the filament radius decays exponentially at a rate of 

 with a front factor that depends on the elastocapillary number ( ). Physically, 
this corresponds to the radius at which we obtain a balance of the elastic modulus 
( G ) and the ‘squeezing’ effects of capillary pressure [34, 35]. 

-1(3 )λ Ec

pη λ=

)

 A representative series of early experiments with a range of polymer solutions 
is shown in figure 9 [90]. In each case, regression to a single exponential yields a 
characteristic relaxation time (cλ . As the concentration (c) of polymer increases, the 
elasto-capillary thinning process slows down as a consequence of the increase in the 
material relaxation time. At late times, two effects become evident; first a systematic 
deviation from exponential behavior, arising from finite extensibility; and secondly the 
discrete resolution of the laser micrometer can be seen in the ‘staircasing’ of the 
measured evolution in the filament diameter.  

 Entov & Hinch [34] also presented generalized expressions for elasto-capillary 
necking in a dilute solution of dumbbells with an arbitrary spectrum of relaxation 
times,  and showed that after a short transitional period, the column 
selects a necking rate so that only the mode with the longest time constant is in fact 
being stretched. Anna & McKinley [87] considered the specific distribution of 
relaxation times expected for the Rouse-Zimm model 

{ 1i iλ = },...n

miλ λi =

3

, with m = 1.5 or  
m = 2 corresponding to the Zimm model or Rouse model respectively. They note that 
because the longest mode achieves an elasto-capillary balance in which the 
Weissenberg number is 1 2/midλ ε =� , all other modes experience a weak stretching flow 
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 Figure 9: Elasto-capillary thinning for a series of semi-dilute 
polyisobutylene solutions dissolved in decalin. The average molecular
weight of the PIB is 2×106 g/mol and the concentrations are 1% (A20), 
2% (A40), 3% (A60), 4% (A80), 5% (A100) respectively. Reproduced
from Liang & Mackley, J. Non-Newt. Fluid Mech. (1994) [90]. 

 

 

 

with i midλ ε =�  which, for i ≥ 2, is less than the critical value of 0.5 required for a 
coil-stretch transition in a uniaxial extensional flow. Because the stretching rate is 
constant in the exponential necking phase, the true transient uniaxial extensional 
viscosity is obtained; however, in contrast to a filament stretching device, it is not 
possible to vary the imposed deformation rate. Measurements for a series of 
polystyrene solutions with different high molecular weight solutes have shown the 
expected scaling in the longest relaxation time and quantitative agreement with linear 
viscoelastic measurements in small amplitude oscillatory shear flow [87]. An 
outstanding remaining challenge, however, is to understand the strong dependence of 
the experimentally-measured relaxation time on the polymer concentration even at 
concentrations well below c* [38, 85]. 

2 3 mi

 

5.3 Visco-Capillary Thinning of Newtonian Fluids 

 Dimensional analysis can be used to argue that – in the absence of inertia (i.e. 
so that Oh >> 1) – a filament of Newtonian fluid (with viscosity µ≡ ) should neck 
down at a constant velocity cap sV ~ σ η . If the surface tension is known from static 
tensiometry, then it should be possible to use measured variations in to find the 
viscosity of the fluid. Liang and Mackley [90] also performed experiments for a 

( )midR t

sη
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Newtonian fluid but were unable to obtain agreement with independent measurements 
of the shear viscosity and surface tension. Similar problems were experienced in other 
early experiments with Newtonian fluids [89], and these findings limited the spread 
and utility of capillary thinning instruments . A comparison of the full axial profiles 
obtained from experimental capillary thinning experiments with a viscous oil and a 
dilute polymer solution is shown in figure 10. It is clear that for a Newtonian fluid, the 
approximation of an axially-uniform cylindrical filament is less appropriate.  

Direct integration of the zero-dimensional equation for a Newtonian fluid 
(equation (15)) gives a linear variation in the filament profile with 

( ) ( )( ) (6 )mid s cR t tσ η= t−  [34] and the numerical factor of 0s R  corresponds 
exactly to the growth rate of the fastest growing mode (of infinite wavelength) in 
Rayleigh breakup of a viscous fluid jet of radius R0 [28, 64]. However this analysis is 
only applicable for infinitesimal perturbations about a cylindrical configuration and 
neglects the axial variations in the slenderness of the fluid thread and the long-range 
nature of viscous stresses in low Reynolds number flows. McKinley & Tripathi [91] 
used numerical calculations of the full one-dimensional governing equation (14) and 

6σ η

 

  

Figure 10: Comparison of temporal evolution in filament profiles for a
viscous styrene oligomeric oil and the same oil containing 500ppm of a 
high molecular weight monodisperse polystyrene (M = 2×106 g/mol). 
Adapted from S.L. Anna, PhD Thesis 2000 [23]. 

 

1 mm

t = 0 s t = 2.1 s t = 4.2 s t = 6.3 s t = 8.6 s t = 10.5 s

t = 0 s t = 8.5 s t = 17.0 s t = 25.5 s t = 34.0 s t = 42.5 s

SM-1 Fluid:  0.05 wt% PS (Mw = 2 x 106 g/mol.) in oligomeric styrene

PS Oil: Oligomeric styrene Bo = ρgR0
2 σ ≈ 19 t* = η0 R0 σ( )= 8.5s

t* = 9.8 s

 29



experiments with Newtonian calibration fluids to show that incorporating these axial 
variations as well as gravitational effects leads to additional contributions to the total 
force on the thread. At short times, gravitational sagging in the filament was found to 
be important (as can clearly be seen from the loss of top-bottom symmetry in figure 
10) and leads to deviations from the similarity solution [91]. However, for sufficiently 
small radii so that gravitational effects are no longer important, the midpoint radius of 
a Newtonian fluid undergoing capillary thinning evolves according to the similarity 
solution of Papageorgiou [27] for visco-capillary (VC) necking indicated in figure 8 
and table 2. In dimensional form this expression may be written: 

 ( )t−( ) 0.0709mid c
s

R t tσ
η

=  ,  for ( )midR gσ ρ≤ .        …...….(16) 

The critical time to breakup may be obtained by setting 0( 0)R t Rmid = =  to be 
14.1ct = . The numerical front factor in this equation changes by a factor of 

more than 100% from the value of ‘6’ obtained from a simple zero-dimensional 
balance. Clearly, an accurate appreciation of this correction factor is critical if 
measurements of  are to be used to extract quantitative values of fluid 
parameters that are consistent those measured in shear flows.  

miR

0s Rη σ

( )d t

 

5.4 Elasto-Capillary Thinning revisited; the approach to full extension 

 Although the deviation is less marked, recent analysis has shown that there are 
also differences between the one-dimensional and zero-dimensional analyses for a 
viscoelastic fluid. The small, but non-zero axial gradients in the cylindrical thread lead 
to a net tensile force in the thread that scales with the thread radius ( )z ( )midF t ~ R t  as 
expected but has a numerical coefficient that is slightly different from that assumed in 
the zero-dimensional analysis [48]. The self-similar nature of the necking process in a 
highly elastic fluid thread is shown in figure 11. 

High resolution video-microscopy imaging and an edge-detection algorithm is 
used to image the junction region matching the cylindrical draining thread to the 
hemispherical quasi-static end-drop [92] as shown in figure 11(a). As time progresses 
this region becomes increasingly sharp. When plotted on a dimensionless scale 
normalized with the neck radius  (here denoted ) it is clear that the 
profiles progressively approach a single self-similar profile (figure 11(b)). These 
experimental observations are in good agreement with the similarity solution to the 
one-dimensional governing equation for the Oldroyd-B model shown by the dashed 
line in figure 11(b). This similarity solution predicts the same necking rate as the zero-
dimensional elasto-capillary analysis (as given in equation (8)); however the front 
factor is modified by a factor of  as shown in table 2.  

( )midR

-1/32

t minh ( )t

As we have noted in §4, when the molecules approach full stretch the necking 
dynamics cross-over from exponential to linear decay as given by equation (11) and 
indicated schematically by the dashed line in the rightmost figure of table 2. Entov & 
Hinch [34] use the FENE-P model to provide a very approximate estimate of the 
corresponding critical time to breakup. 
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(a) 

 

 

  

Figure 11: High resolution videomicroscopy showing the progressive
formation of the corner region during capillary thinning in a PS/PS 
Boger fluid; (a) digitized filament profiles; each profile is separated in
time by 2 0.t sδ λ= ≈ ); (b) the profiles slowly approach a self-similar 
shape when plotted in dimensionless form scaled with the minimum 
filament radius. Reproduced from Clasen et al. J. Fluid Mech. In press, 
(2005) [92]. 

 

(b) 

4 Z
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Stelter et al. [93, 94] used careful measurements of the thinning dynamics in a 
wide range of different drag-reducing polymer solutions to construct nomograms of 
the measured relaxation time and the steady elongational viscosity; a representative 
example is shown in figure 12. The measurements show that the data lie along two 
distinct limiting curves; one for flexible non-ionic polymers (upper curve labeled ‘1’) 
and one for ionic polymers (labeled ‘2’) which exhibit aspects of rigid-rod like 
behavior as a result of charge repulsion along the chain. 

 32

2
p Lη

This nomogram shows that as the relaxation time increases (either via 
increasing the molecular weight of the chain or the concentration in solution) the 
steady extensional viscosity also increases. The existence of two bounding curves 
provides a convenient method of rapidly assessing the molecular extensibility of a 
particular polymer chain. However the theoretical underpinnings of this empirical 
correlation have not been firmly established yet. Substitution of the analytic 
expression for the axial stress in a finitely-extensible dumbbell model given by 
equation (7) into the zero-dimensional force balance (equation (15)) confirms that 
observation of a linear radial decay in a capillary thinning experiment at long times 
indeed corresponds to measurement of the true terminal extensional viscosity: 

. If the solvent contribution given by the first term in this 
expression is negligible then noting that the polymeric contribution to the viscosity is 

3 2E ,app E sη η η→ = +

 

 

 

 
 Figure 12: Variation of the steady-state apparent extensional viscosity

(here denoted 
 

) with the characteristic relaxation time (λ) for a 
number of aqueous solutions including polyacrylamide (‘Praestol’);
polyethylene oxide (‘PEO’); carboxymethycellulose (‘CMC’) and
Xanthan gum. Curve ‘1’ denotes flexible coil behavior; curve ‘2’
denotes rigid rod behavior. Reproduced from Stelter et al. J. Rheology
(2002) [93]. 

 
E, tη



 33

Bk Tp G nη λ≡ = λ , we find that the steady elongational viscosity is linearly dependent 
on the relaxation time as shown in figure 12. However the molecular extensibility 
parameter is an independent parameter and so a family of curves is perhaps to be 
expected. The curves in figure 12 confirm the expectation that the molecular 
extensibility of an expanded ionic polymer is smaller than for a non-ionic flexible 
Gaussian chain. Stelter et al. [93] also show that as salt is progressively added to 
polyacrylamide solutions and the intramolecular charge repulsions are screened out, 
measurements of the E /η λ

3
w~ M

 relationship move laterally from curve ‘2’ to curve ‘1’; 
consistent with a decrease in relaxation time and an increase in molecular extensibility. 
Recent drop pinch-off experiments with polyelectrolyte solutions including partially-
hydrolyzed polyacrylamide and DNA show that this increase in flexibility and the 
concomitant increase in the elongational viscosity correlate with enhanced turbulent 
drag reduction [95]. 

νλ

In general, molecular models such as the Rouse-Zimm model predict different 
scalings with molecular weight for the polymer relaxation time and for the steady-state 
extensional viscosity. The scaling of the former quantity with molecular weight is well 
known, , where ν is the solvent quality exponent [96], and the scaling for the 
steady elongational viscosity can be found to be:  

 2 3 2(1 )( )(A B
E w w

w

cN k TG L ~ M M ) ~ M
M

ν ν νη λ 1
w

− +≈ .               …....….(17) 

In the limit of a theta solvent ( 1/2ν = ) the scaling of relaxation time and elongational 
viscosity with  is identical, in agreement with the linear variation in the  
relationship observed in figure 12. For hydrodynamically-interacting chains in good 
solvents (ν →

(M
) there is a small difference in the scaling of the steady elongational 

viscosity  and the characteristic relaxation time )1.6
w ( )81.

wM

0De
1≥

. However large 
variations in the molecular weight would probably be needed to observe these effects 
in capillary thinning experiments and this may explain why no discernable spread in 
the data beyond a single line is seen in the experiments in [93]. Further considerations 
regarding the steady elongational viscosity of flexible and rigid polymers in solution 
are reviewed by James & Sridhar [97]. Repeated capillary breakup experiments on the 
same sample have also been used as a means to monitor the effects of extensional flow 
on the degradation of macromolecules commonly used in drag reduction studies [84, 
89].  

wM E /η λ

3/5

 In most of the careful studies of capillary thinning in polymer solutions the 
fluids have been sufficiently viscous and elastic enough that gravitational drainage is 
relatively unimportant; however if the aspect ratio of the imposed stretching 
deformation is increased substantially then this can lead to pronounced asymmetries in 
the filament [98]. As the Ohnesorge number is decreased, inertial effects can also 
become important and careful control of the aspect ratio employed in experiments is 
critical. Rodd et al. [99] have recently presented a series of experiments with low 
viscosity aqueous solutions of polyethylene oxide in water and show that, in general, 
successful measurements of capillary thinning require either  (for polymer 
solutions) or  (for Newtonian fluids).   

1≥
Oh



5.5 Concentrated Polymer Solutions 

 As the concentration of polymer is increased, coil overlap and entanglement 
effects become increasingly important. Experimental measurements and constitutive 
models for such systems show that the steady extensional viscosity may show both 
extension-rate thickening and extensional-thinning depending on the imposed 
extension rate [100]. Consequently, capillary thinning and breakup measurements may 
show pronounced deviations from the simple elasto-capillary balance appropriate for 
dilute solutions. This can be seen in the experimental measurements at the highest 
concentrations (A80, A100) in figure 9; the filament necking rate becomes 
increasingly rapid as the chains become increasingly deformed and disentangled. 
Capillary-thinning measurements on entangled polystyrene solutions show that the 
filament evolves on time-scales corresponding to the Rouse time for molecular 
stretching rather than on the longest (reptation) time scale [101]; however a 
quantitative theory for this evolution is presently lacking. Numerical calculations 
suggest that the Giesekus model provides a good qualitative description of entangled 
solution response in transient extensional flows [80, 102]; however, no simple analytic 
solution for the evolution in the midpoint radius is available for this, or any other 
nonlinear differential constitutive model.  

Renardy uses asymptotic analysis [40] to show that for many nonlinear models 
the filament dynamics close to breakup change substantially and the radius can go to 
zero uniformly over a finite region of space rather than at a single point. This 
phenomenon has not been observed definitively yet but the consequences of 
entanglement effects in capillary thinning can be illustrated by the experimental 
images shown in figure 13. The fluid is a semi-dilute entangled solution of polystyrene 
in tri-cresyl phosphate (TCP) which has been well-characterized in both steady and 
oscillatory shear flows and is weakly strain-hardening in transient extensional flow 
[103]. As the filament necks, the formation of a thin elastic filament can be observed. 
However, before the elasto-capillary similarity solution shown in figure 11 is fully 
established, the maximum elongational viscosity is reached, the necking rate in the 
central section increases and filament failure occurs. The enlargement of the final 
frame suggests that the ultimate breakup event occurs simultaneously at several spatial 
locations; however high speed and high resolution studies of breakup in entangled 
solutions are needed for definitive assessment. 

 

5.6 Weakly Viscoelastic Fluids 

In the limit of very weakly elastic liquids, elongated filaments and strands are 
not observed; however it can be seen from the form of equation (15) that any non-
Newtonian contribution to the total stress may be expected to retard the rate of 
necking (as given by middR dt ). Since the flow is elongational in character, the use of 
the Reiner-Rivlin class of models is appropriate to analyze the first effects of non-
Newtonian stresses [19]. Following specification of the form of the two functions of 
the flow invariants in this model, the resulting equation set can then be integrated 
forward in time. For the simplest case of a second order fluid, the extensional viscosity 
can be expressed in the form 3 3E s Ebη η ε= + � . This expression can be combined with 
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equations (1) & (15) and solved analytically. The resulting solution is implicit in time 
however, and is not given here. Instead we consider two appropriate asymptotic limits: 
for low deformation rates and short times, the material response is Newtonian and the 
necking rate is linear in time; however, close to breakup the quadratic term in the 
extensional viscosity expression dominates. In this regime, the filament radius 
decreases quadratically in time as indicated in the fourth column of table 2. The 
filament still breaks in finite time and both the strain and the strain-rate diverge, 
despite the extensional-thickening in the viscosity. Preliminary experiments in our lab 
using STP oil (a prototypical weakly elastic fluid employed by Joseph and coworkers 
in rod-climbing studies [104]) suggest that this is a simple but effective model for 
interpreting the first non-Newtonian effects in capillary thinning [105].  

 

5.7 Generalized Newtonian Fluids 

Renardy [36] has considered the case of Generalized Newtonian Fluids and 
shown that similarity solutions exist with an exponent that depends on the functional 
form of the viscosity and how it varies with deformation rate in the necking fluid 
thread. Recently Doshi et al. [106, 107] have considered the case of power-law fluids 

 

 

 Figure 13: Images of the elastocapillary necking of a concentrated
polystyrene solution (5wt% PS in tricresyl phosphate (TCP)). The shear
rheology of the fluid is well described by a single Giesekus model with 

 = 59 Pa.s, = 2 Pa.s, λ = 0.6 s and α = 0.2  Unpublished results; 
courtesy of O. Brauner and A. Tripathi. 
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and Carreau fluids in detail. In the region of the neck, the capillary pressure is high 
and consequently so is the necking rate. The local decrease in the effective viscosity in 
this region leads to a positive feedback effect and the necking rate accelerates 
continuously. The fluid column thus shows enhanced axial gradients and a ‘cusp-like’ 
profile close to the pinch region as indicated schematically in table 2. In fact a detailed 
analysis for the power-law fluid (both with and without inertia) shows that the 
slenderness assumption (i.e. that 1dR dz < ) is violated for a power law fluid with 
exponent n ≤ 2/3 [107]. 

For a power-law fluid with constitutive equation ( )n 1Kγ −� �= γτ , the midpoint 
radius varies as: 

 ( )nt

( )nΦ

0

( )mid
c

R n t
R K

σΦ= −  ,             …....…(18) 

where n is the power-law exponent, K is the consistency index and  is a 
numerical constant. A series of numerically-computed profiles are shown in figure 
14(a). As the filament necks down and approaches the singular point of breakup (at 
τ = −

)

 = 0) the midpoint radius is well-described by a power-law of slope n. 
Measurements with foods and consumer products which frequently exhibit inelastic 
shear-thinning behavior show that the rate of filament necking is well-approximated 
by this expression [108]. In figure 14(b) we show capillary thinning measurements in 
two yoghurt samples; one a whole-fat sample and the other a low-fat formulation. The 
image profiles (inset) from a high-speed video camera show the absence of a stringy 
appearance and instead reveal the development of a cusp-like region in the neck. 
Nonlinear regression of equation (18) to the data allows determination of the power-
law exponent characterizing the fluid rheology (n) and also the time to failure (tc) 
which is important in package-filling operations.  

( )c Rt t t

 In general the front factor  in equation (18) is a function of n and must be 
found numerically. The zero-dimensional model of equation (15) gives 

(nΦ
2 3n−

1DΦ =

0.6≥

 
and a polynomial regression to the numerical solution of the full similarity equations 
[107] gives: 

2 30.0709 0.2388(1 0.5479(1 ) 0.2848(1 )num n ) n nΦ = + − + − + −          ……….(19) 
for n .  

In each of the above expressions, the correct Newtonian result is obtained for 
n = 1. In the case of a Carreau fluid, this power law-like necking is ultimately cut-off 
by the background Newtonian viscosity (η∞ ) at very high deformation rates, and in 
this case the midpoint radius ultimately goes to zero linearly in time. 
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 Figure 14: Two different representations of capillary thinning of a
generalized Newtonian fluid: (a) evolution in the dimensionless radius

0( )min midh R= t R  as a function of dimensionless time from the 
singularity 0( )ct t 0Rτ σ η= − . Reproduced from Doshi et al., J. Non-
Newt. Fluid Mech. (2003) [107]; (b) evolution in the (dimensional) 
radius as a function of time for two different yoghurt samples (a ‘non-
fat’ and a ‘regular’ commercial yoghurt) together with a fit to equation
(X); the images are obtained using a high-speed video camera. 
Reproduced from A.E.Park, M.Sc. Thesis 2003 [108];  
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The case of a generalized Newtonian fluid with a yield stress is interesting but 
has not been studied in great detail to date. The single most important difference 
between a fluid exhibiting a yield stress and other fluids tested in capillary thinning 
and break-up devices is the existence of a critical sample radius (at the ‘neck’ or 
midpoint). The maximum capillary pressure in a thread of fluid is mid  and it is this 
that drives the fluid flow in the thread. If the yield stress exceeds this value, then 
capillary pressure is insufficient to generate a flow. The exact value for this critical 
radius has to be determined from the full solution to the problem; however, an a priori 
scaling estimate for the critical radius can be deduced on dimensional grounds to be 
given by R ~ . For sample radii  then the thread or ‘liquid bridge’ will 
simply sit in static equilibrium and not evolve in time. This has been observed in 
careful experiments with liquid bridges of liquid crystalline materials which exhibit a 
yield stress [63]. Breakup of fluid jets with a yield stress have also been studied by 
Goldin et al. [109].  

yR R>

Rσ

y yσ τ

As the radius of a fluid thread decreases, the capillary pressure inside the fluid 
increases and will eventually exceed the value of the yield stress. This is why it is 
possible to observe stable liquid bridges of foods such as mayonnaise or ketchup 
connecting two solid surfaces (e.g. between one’s thumb and forefinger) when the 
thread radius is large, however these threads break when you pull your fingers apart – 
it is rare to see thin “stringy” threads of yield stress materials (unless high mol. weight 
additives are added). Solving the axially-uniform zero-dimensional equations gives the 
following expression for the midpoint radius  

 ( ) 1 exp
3 2 3

y c
mid

y

( t t )
R t

τσ
τ µ

  −
= −      

 ,           …...….(20) 

with a critical radius 3yR yσ τ= . Validation of the accuracy of this equation has yet 
to be performed. 

 

6. CONCLUSIONS AND FUTURE WORK 

 In this review we have surveyed recent experimental, numerical and theoretical 
advances in our understanding of the capillary-thinning and breakup of complex 
fluids. In addition we have attempted to note in each discussion some specific 
technical questions that remain outstanding. In this section we highlight more broadly 
some important areas for future research.  

 The liquid bridge geometry shown in figure 3(c) has become a standard 
laboratory configuration for studying visco-elasto-capillary thinning for the reasons 
highlighted above. However the other geometries are more relevant to commercial 
processing operations and additional computational and theoretical analysis of these 
configurations is needed. The addition of polymer to dripping jets and drop-on-
demand inkjet printing configurations can inhibit breakup and completely eliminate 
satellite droplets [46, 47, 110].  
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Figure 15: The effect of polymeric additive on drop pinchoff. (a) The
image on left shows the pinch-off of a water droplet; (b) the inhibition 
of pinchoff through addition of 100ppm of PEO (M ≈ 4× 106 g/mol). (c) 
The measured evolution in the neck radius initially shows rapid necking
with 2/3

minh ~ τ  before crossing over to a slower exponential decay at
t ≈ 0.07s. Reproduced from Amarouchene et al., Phys Rev. Lett. (2001) 
[46]. 
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An illustration of the dramatic effect of elasticity is shown in figure 15. The 
left-hand image shows the pinch-off of a droplet in a low viscosity Newtonian fluid 
(Oh << 1) and is now well-understood, both theoretically and numerically [43, 51, 64]. 
However the addition of high molecular weight polymer inhibits the singularity. 
Measurements of the neck radius shown in figure 15(c) show that at short times the 
polymer does not modify the initial necking; however, there is an abrupt crossover 
from inviscid-like dynamics ( 2/3h ~ τ ) to exponential elasto-capillary decay 
( exp( 3 )th ~ λ− ) as expected from figure 8. A simple zero-dimensional model of the 
neck evolution has recently been presented [38] but no numerical simulation of the 
complete one- or two-dimensional equations has yet been possible. Interestingly the 
system passes from an inertio-capillary to an elasto-capillary balance and viscous 
effects are thus irrelevant throughout. This suggests that studies of the dynamics of 
‘inviscid elastic fluids’ (or more accurately ‘potential flows of viscoelastic fluids’) 
may be a viable avenue for future research. Joseph and coworkers have recently used 
such an approach to consider the linear stability of viscoelastic jets and find excellent 
agreement with the full linear theory [111, 112]; however, the extension to large 
amplitude deformations and nonlinear viscoelastic effects remains to be considered. 

Other liquid bridge configurations have also been proposed as potential 
elongational rheometers for probing the response of complex fluids. In particular, the 
filancemeter has been developed as a method of probing the spinnability of 
viscoelastic biological fluids such as respiratory and cervical mucus [113, 114]. It has 
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been known since the early work of Scott-Blair with bovine mucus that the apparent 
extensional rheology of these fluids varies significantly with hormonal cycles [115]. 
This has lead to patented devices that use ex-vivo measurements of the extensional 
viscoelasticity for probing fertility in both cows and humans [116]. The filancemeter 
uses an axial drive system to elongate a cylindrical liquid bridge linearly in time 
beyond its Plateau stability limit. The force in the stretched fluid column is not 
measured; however the variation in the total lifetime as the pulling velocity is varied 
can be determined with high accuracy by measuring the electrical conductivity 
between the upper and lower plates. Numerical calculations with Newtonian [68] and 
Generalized Newtonian Fluids [67] show that the length to breakup increases 
monotonically with the capillary number and also depends on the extensional rheology 
of the fluid. James has recently shown that measurements of the increased length to 
breakup resulting from non-Newtonian stresses can also be used to probe the 
extensional rheology of weakly elastic fluids such as printing inks and coating colors 
[117]. Careful experiments with Newtonian fluids suggest that the length to break 
increases beyond the Plateau stability limit with the square root of the separation 
velocity [118]; however, there is presently no analytic theory for Newtonian or non-
Newtonian fluids. 

Although we have reviewed experimental measurements for a large number of 
different materials in this article, the extensional rheology of several classes of 
complex fluids that have not been studied extensively to date; especially surfactant-
based systems. Theoretical analysis of the necking of a viscous Newtonian thread in 
the presence of an insoluble surfactant shows that Marangoni stresses dramatically 
affect the necking dynamics and satellite formation; however ultimately the surfactant 
is convected out of the neck sufficiently fast that the visco-capillary solution of 
Papageorgiou is regained [119]. Linear stretching experiments with a soluble 
surfactant [120] show that, depending on the viscosity of the bridge, the presence of 
surfactant can either increase the length to breakup (if Oh >> 1) or decrease it (if  
Oh <<1). It will be interesting in the future to study other surfactant systems such as 
worm-like micellar solutions which exhibit strong strain-hardening in filament 
stretching experiments followed by sudden rupture events at high stresses [121]. 
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