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Polymeric filament thinning and breakup in microchannels
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The effects of elasticity on filament thinning and breakup are investigated in microchannel cross
flow. When a viscous solution is stretched by an external immiscible fluid, a low 100 ppm polymer
concentration strongly affects the breakup process, compared to the Newtonian case. Qualitatively,
polymeric filaments show much slower evolution, and their morphology features multiple connected
drops. Measurements of filament thickness show two main temporal regimes: flow- and capillary-
driven. At early times both polymeric and Newtonian fluids are flow-driven, and filament thinning is
exponential. At later times, Newtonian filament thinning crosses over to a capillary-driven regime,
in which the decay is algebraic. By contrast, the polymeric fluid first crosses over to a second type
of flow-driven behavior, in which viscoelastic stresses inside the filament become important and the
decay is exponential. Finally, the polymeric filament becomes capillary-driven at late times with
algebraic decay. We show that the exponential flow thinning behavior allows a novel measurement
of the extensional viscosities of both Newtonian and polymeric fluids.

PACS numbers: 47.50.-d, 47.55.df, 83.50.Jf

I. INTRODUCTION

The progressive breakup of an initially stable fluid
thread into small drops or bubbles is a rich phenomenon
of great interest [1]. For example, flow focussing in mi-
crofluidic devices can continuously produce drops or bub-
bles whose sizes are controlled by the relative flow rate
of the two immiscible fluids [2–7]. While most such work
concerns Newtonian fluids, many fluids of interest for
lab-on-a-chip applications are likely to exhibit complex
micro-structure and non-Newtonian behavior, such as
viscoelasticity. Furthermore, viscoelastic effects, which
can be quantified by the Elasticity number El=λη/(ρL2),
scale inversely with the square of the device length scale
(L), and are likely to be accentuated in microfluidic de-
vices. Here, λ is the fluid relaxation time, η is viscosity,
and ρ is density. For polymeric drop breakup in macro-
scopic flow, elasticity can give rise to breakup behavior
that is markedly different from that of Newtonian flu-
ids [8–11]. For example, a viscoelastic filament driven
by gravity in a quiescent bath [12] undergoes an initial
linear viscous decrease in the filament diameter, followed
by a slower thinning process in which capillary forces are
balanced by the fluid elastic stresses.

Recently, a numerical investigation in a flow-focusing
device [13] showed qualitative differences with respect
to Newtonian fluids such as prolonged thinning of the
fluid filament and delay of drop pinch-off. No measure-
ments of thinning rates or breakup times were presented.
An experimental investigation in a ‘T’ shaped geometry
using a low viscosity, elastic fluid [14] also found pro-
longed thinning of the fluid filament. The authors ob-
served a linear decrease in filament diameter followed by
a ‘self-thinning’ exponential regime, which was argued to
have a rate inversely proportional to the fluid relaxation
time (λ). However, λ was found to vary over an order
of magnitude with shear rate, though it should remain

constant. While both investigations found similar qual-
itative trends, no quantitative connection has yet been
made to the extensional flow within the filament during
thinning and breakup.

In this paper, we compare the filament thinning and
breakup of Newtonian and viscoelastic fluids of equal
shear viscosity in a microchannel cross-slot geometry.
Here, the outer Newtonian fluid stretches the inner New-
tonian or polymeric fluid into a thin filament until it even-
tually breaks up into drops. This geometry allows for
very fine control of the flows over a broad range of shear
rates. Measurements of filament thickness show two tem-
poral regimes: (i) a flow-driven regime in which the
filament thins exponentially and (ii) a capillary-driven
regime in which the filament thins algebraically. Our
analysis leads to a novel method of measuring the exten-
sional viscosities of both Newtonian and polymeric fluids.
The thinning behavior allows comparison with a micro-
scopic model relating polymer extension to rheology.

II. METHODS

The experimental configuration is a cross slot mi-
crochannel, W = 50 µm wide and L = 30 µm deep,
molded in poly(dimethylsiloxane) (PDMS, Dow Sylgard
184) using standard soft-lithography methods [15, 16].
Channels are sealed with a glass cover slip after exposure
to an oxygen plasma. In order to keep the microchannel
wetting properties uniform, the glass cover slip is coated
with a thin layer of PDMS prior to the exposure. The
assembled channels are then baked for 12 hrs at 100 ◦C
in order to obtain hydrophobic walls wetted by the con-
tinuous liquid phase.

The continuous phase is mineral oil containing 0.1%
by weight of surfactant (SPAN 80, Fluka). Two types
of dispersed phases are used: a Newtonian fluid and a
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polymeric fluid. The Newtonian fluid is a 90%-glycerin
aqueous solution. The polymeric fluid is made by adding
100 ppm of high molecular weight polyacrylamide (PAA,
MW = 18 × 106, 15% polydispersity), which has a flexi-
ble backbone, to a Newtonian 85%-glycerin aqueous solu-
tion with a measured shear viscosity of 0.2 Pa s; the wa-
ter/glycerin mixture is used as a solvent for the polymer.
It is dilute, below the overlap concentration of approx-
imately 350 ppm. The interfacial tension between the
continuous and dispersed phases is σ = 10 mN/m. Shear
rheology is characterized with a stress-controlled rheome-
ter at 25 ◦C. As shown in Fig. 1, the shear viscosities of
the oil and Newtonian fluids are nearly identical and in-
dependent of shear rate: ηs ≈ 0.24 Pa s. Also as shown,
the viscoelastic polymeric fluid exhibits nearly constant
shear viscosity (power law index=0.97) and a first normal
stress difference N1, which increases with shear rate.

We fit the polymeric fluid shear rheology data to the
widely-used FENE-P model (finite extensibility nonlin-
ear elastic with Peterlin’s closure) [17]. This model is
well adapted for dilute (and semidilute) high molecu-
lar weight polymeric solutions, and has been used pre-
viously to analyze filament thinning of polymeric fluids
in macroscopic experiments [9]. A fluid described by the
FENE-P model possesses the same dynamical proper-
ties as a fluid described by the much simpler Oldroyd-b
model [18], which assumes that polymers can be mod-
eled as Hookean springs. The main difference is that the
Oldroyd-b model allows for infinite extension of polymer
molecules, while the FENE-P model uses a spring-force
law in which the polymer molecules can be stretched only
by a finite amount in the flow field [17, 18].

A simultaneous fit of the polymeric fluid ηs and N1

data to the FENE-P model provides the fluid relaxation
time λ = 0.45 s and a dimensionless finite extensibility
parameter b = 4500, which are the only two adjustable
parameters (Fig. 1). To perform the fit, we also need val-
ues of the water/glyceryn solvent viscosity (0.2 Pa s) and
the number density of polymer molecules in the solution
(4.4×1012 cm−3); both quantities are constants. Details
on the equations and methods used to fit the FENE-P
model to the shear rheology can be found elsewhere [19].

The dispersed and continuous phases are injected
into the central and side arms of the cross-channel, re-
spectively, using syringe pumps (Harvard Instruments).
Experiments are performed for flow rate ratios, q =
Qoil/Qaq, ranging from 10 to 200. In all cases, the aque-
ous flow rate is kept constant at Qaq = 0.01 l/min. This
is low enough that the behavior is quasi-static, such that
the periodicity -but not the morphology- depends Qaq.
For this range of parameters, the Reynolds number is less
than 0.01; therefore viscous forces are much larger than
inertial forces. Similarly the capillary number ranges
from 0.02 to 0.8; therefore, viscous forces are also larger
than surface forces. Under these conditions an aqueous
filament is formed and stretched by the flow of the sur-
rounding oil. The thinning and breakup of the filament
are imaged using an inverted microscope and a fast video
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FIG. 1: (Color Online) Fluid rheological characterization.
(Left y-axis) Shear viscosity vs shear rate for all fluids;
oil=mineral oil; Newtonian=water/glycerin mixture; poly-
meric=PAA in water/glycerin mixture. The shear viscosity is
nearly constant even for the polymeric solution ηs ≈ 0.24 Pa s.
(Right y-axis) First normal stress difference for the polymeric
solution vs shear rate. Dashed curves represent fits using the
FENE-P model with parameters λ = 0.45 s and b = 4500.

camera, with frame rates between 1 and 10 kHz.

III. RESULTS

A. Qualitative Behavior

Sample frames from video data are shown in Fig. 2, for
both Newtonian and polymeric fluids, at a flow rate ratio
of q = 60. The Newtonian case, shown in the left-column,
displays typical filament thinning and drop formation.
The aqueous phase is drawn into the cross-slot channel
(a), and begins to elongate and collapse (b-d), forming
a primary drop connected by a very thin filament; later
(e) the filament thins at a faster rate and breaks into a
large primary drop and small satellite droplets.

The polymeric case, shown in the right-column of
Fig. 2, displays very different behavior. Initially (a), we
observe a morphology that is similar to that of the New-
tonian fluid, i.e. viscoelasticity is negligible at first. As
the thinning progresses, the polymeric fluid develops a
longer neck with a drop attached to it (b). This filament
elongates while thinning at a slower rate than in the New-
tonian case (c). Near the breakup event, the polymeric
fluid shows multiple beads (‘beads-on-a-string’) attached
to the filament (d) [8, 10, 20]. After breakup, there are
many satellite drops (e).

B. Quantitative Behavior

Filament thinning is quantified by the decrease in di-
ameter, h(t), as a function of time. To accomplish this,
we fit a third-order polynomial equation to the interface
contour in the cross slot region. We assume that the in-
terface is symmetric across the centerline and only half
of the contour is fitted with the polynomial. We then



3

(a)

(b)

(c)

(d)

(e)

Newtonian Polymeric

FIG. 2: Evolution of the thinning process for Newtonian (left
column) and polymeric fluids (right column), for a flow rate
ratio q=Qoil/Qaq=60, where Qoil/Qaq corresponds to the oil
and aqueous phase flow rates, respectively. Oil is the con-
tinuous (outer) phase while the aqueous phase is either New-
tonian or polymeric. (a) Initial regime; (b) t/tb = 0.15, where
tb is breakup time; (c) t/tb =0.45; (d) t/tb = 0.95; (e) after
breakup. Values of tb for the Newtonian and polymeric cases
are 11.5 ms and 245 ms, respectively. Note the appearance of
satellite droplets in the Newtonian case and multiple beads
attached to the filament in the polymeric case (d,e). The
channel width and depth are 50 µm and 30 µm, respectively.

locate the minimum in the polynomial first derivative.
The filament diameter is measured at the point where
the minimum in the first derivative is located; this mini-
mum is usually located in the cross-slot region. Example
results are shown in Fig. 3(a) for three flow rate ratios,
q = 10, 30, and 60. At short times, the Newtonian and
polymeric fluids exhibit identical initial thinning, which
is indicative of their common ηs. But at longer times, the
two diverge with the polymeric filament lasting at least
an order of magnitude longer before breakup. We also
note shorter breakup times as q is increased. This trend
is also found in other flow-focusing experiments [2, 21]
and in a numerical investigation [22] using Newtonian
fluids.

The filament strain rate is computed from h(t) data
by assuming a homogeneous uniaxial extensional flow in-
side the filament: ε̇ = −(2/h)dh/dt [23, 24]. While this
method gives a good indication of ε̇ when the filament
thread is axisymmetric, it may break down at very early
stages of the thinning process when the filament may be
confined by the channel walls. However, we are confident
in our measurements and methods since we are able to
recover nearly the exact theoretical value of extensional
viscosity expected for the Newtonian fluid (cf. Fig. 5).

Results for the same three flow rate ratios are given
in Fig. 3(b). For the Newtonian fluid, ε̇ is initially inde-
pendent of time; therefore, in this regime, h(t) decreases
exponentially with time. For the polymeric fluid, ε̇ is ini-
tially equal to the same constant as for the Newtonian
fluid. But it soon departs and, after a transient interval,
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FIG. 3: (Color Online) (a) Filament thickness h(t) for both
Newtonian and polymeric fluids for q=10, 30, and 60. (b)
Filament extensional strain rate ε̇=-(2/h)dh/dt for the same
fluids. Both viscous and elastic regimes are characterized by
constant ε̇.

settles down to smaller constant value, indicating a sec-
ond regime of slower exponential thinning. For all fluids
at the very latest times, close to breakup, the final de-
crease of h(t) to zero gives an apparent divergence of ε̇.
We show in the following discussion that the data just
before breakup are consistent with a linear decrease in
filament diameter, h(t) ∝ (t− tb) where tb is the breakup
time.

C. Flow-Driven Regime

To model the exponential decrease of filament diame-
ter, we assume that (1) filament thinning is driven mainly
by the outer fluid extensional flow in the cross-slot re-
gion and (2) the shear flow that develops is relatively far
downstream from the cross-slot region and should have
no implications on the local stress balance. These are
reasonable assumptions since shear stresses tangential to
the filament do not contribute to the thinning (or squeez-
ing) of the filament; filament thinning is driven by viscous
stresses normal to the filament.

Starting from an assumption of stress balance inside
and outside the interface, and applying the definition
of extensional viscosity [25], we obtain the condition
ηeε̇ = ηe,oilε̇oil. Here, the left and right sides are the
extensional viscosity multiplied by the extensional strain
rate for the aqueous filament and continuous oil phases,
respectively. As noted above, the strain rate in the fil-
ament is ε̇ = −(2/h)dh/dt. The strain rate for oil in



4

-150 -100 -50 0
0

5

10

15

20

25

h 
 ( µµ µµ

m
)

((((σ/ησ/ησ/ησ/η
e
) (t-t

b
)  (µµµµm)

 

 

q=10
   20
   30
   60
  100
  200

FIG. 4: (Color Online) Capillary driven breakup regime. At
very late times, the filament thins roughly linearly in time
with a speed proportional to σ/ηe for both Newtonian (open
circles) and polymeric (filled circles) fluids. The flow ratio
(q) is color-coded in the legend for both cases. The solid line
represents slope=-1/2.

the cross-slot region is ε̇oil ≈ Qoil/(W 2L), as verified
by particle-tracking methods [26]. Lastly, since the oil
is Newtonian, its extensional viscosity is ηe,oil = 3ηs,oil

[25, 27]. Therefore, also assuming that ηe is indepen-
dent of time, the filament diameter thins exponentially
according to

h(t) = ho exp[−(3/2)(ηs,oil/ηe)ε̇oilt]. (1)

where ho is an integration constant. In such flow-driven
regimes, Eq. (1) may be used to deduce ηe from h(t) data.

We note that the quantity ε̇oil is measured in the
cross-slot region, where the flow is extensional and where
pinching from the ’mother drop’ occurs. To this end, we
have checked that ε̇oil remains constant during the fila-
ment thinning and breakup event; the average velocity of
the oil in the cross-slot region is constant.

D. Capillary-Driven Regime

The linear decrease of the filament thickness near the
final breakup can also be modeled by stress balance, now
by incorporating surface tension effects. Specifically, the
Rayleigh-Plateau instability eventually sets in so that
capillary forces cause beading and ultimately breakup.
Equating radial stress with the Laplace pressure gives
ηeε̇ = σ/h [7, 28, 29]. Therefore, the filament diameter
thins linearly with time according to

h(t) = −(1/2)(σ/ηe)(t− tb), (2)

where tb is the breakup time. In such capillary-driven
regimes, Eq. (2) may be used to deduce ηe from h(t)
data. Equation 2 shows that, near the singularity, h(t) ∼
σ/ηe, which has been observed numerically [30] in Stokes
regime, except that, in the numerical work, shear rather
than extensional viscosity is used in the denominator.

To demonstrate the consistency of extensional viscos-
ity results from the flow- and capillary-driven regimes,
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FIG. 5: (Color Online) Extensional viscosities of both New-
tonian and polymeric fluids, derived from the filament thin-
ning measurements and Eq. (1), as a function of the exten-
sional strain rate ε̇=-2/h(dh/dt). The polymeric fluid exten-
sional viscosity shows strain hardening and increases with a
power law exponent of approximately 1.0. The theoretical
Trouton ratio of a Newtonian fluid is 3.0 (solid line). The
FENE-P model prediction is also shown, but is far from the
measurements.

we plot data for h(t) vs (σ/ηe)(t − tb) in Fig. 4. There,
the value of ηe is taken from analysis of the flow-driven
regime using Eq. (1). To within apparently random de-
viations, h(t) data vanish linearly vs (σ/ηe)(t− tb) with
slope −1/2, in accord with Eq. (2). Note however that
the dynamic range is limited, since the imaging resolution
is about 2 µm. Therefore, the capillary-driven regime
is consistent with the flow-driven regime, but the latter
gives more accurate values of extensional viscosity ηe.

IV. DISCUSSION

The extensional properties of polymeric fluids are im-
portant for applications such as turbulent drag reduction
and splash suppression [25, 31]; however, measurement
of ηe has remained a difficult task [32]. In what follows,
we show that high-quality data on the values of steady
extensional viscosity for both polymeric and Newtonian
fluids can be obtained using our method.

Final results for ηe based on Eq. (1) are plotted in
Fig. 5 vs extensional strain rate. Here each point rep-
resents a different fixed flow-rate ratio, q. For the New-
tonian fluid, ηe is independent of strain rate and nearly
equals 3ηs as expected [25, 27]. This agreement serves as
a second check, complementary to Fig. 4. For the poly-
meric fluid at early times, in the first flow-driven regime,
the behavior is the same as for the Newtonian fluid (not
shown). At later times, in the second flow-driven regime,
the extensional strain rate of the filament is lower and ηe

is higher. This ‘strain hardening’ behavior is due to the
stretching of the polymer molecules in the extensional
flow of the thinning filament, and it has been observed
in other macroscopic experiments [23, 33].

In Fig. 1, the FENE-P model properly describes both
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the ηs and N1 versus shear rate with two adjustable pa-
rameters, which are λ=0.45 s and b=4500. Using these
values and the solvent shear viscosity value (0.2 Pa s),
the FENE-P prediction for ηe is plotted in Fig. 5. It ex-
hibits strain-hardening behavior, which saturates at high
strain rates by accounting for the finite extensibility of
the polymer molecules. However, by comparison with our
data, the predicted strain hardening sets in too soon and
too abruptly. A possible source of error may be polymer
dispersivity (∼15% in MW ), which can smear out the
sharp rise in ηe [9]. It cannot, however, account for such
early transition to strain hardening behavior since λ ∼
MW

3/2.
Other sources of error may be the inherent limitations

of the FENE-P model such as the pre-averaging force
connectors in the dumb-bell model originally proposed
by Peterlin [17]. This averaging is known to lead to un-
expectedly large polymeric stresses compare to the non-
averaged FENE model [34]. Another limitation is that
while real polymeric fluids have a spectrum of λ, the
FENE-P model, as used here, is described by a single
λ. Therefore, we should expect some type of failure of
predictions of ηe based on the FENE-P model.

V. CONCLUSION

In conclusion, small amounts of flexible polymer can
dramatically affect filament thinning and breakup in
micro-channel extensional flow. In contrast to macro-
scopic observations, we find both a flow-driven regime in
which the filament thins followed by a capillary-driven
regime responsible for filament breakup. For a New-
tonian fluid, the filament thins exponentially with time
until onset of capillary surface tension-induced breakup.

For a polymeric fluid, with the same shear viscosity -
nearly independent of shear rate, there is an intermedi-
ate regime in which the filament thins exponentially at
a much slower rate. Furthermore the capillary regime
features generation of a series of small droplets along the
filament. These differences may be attributed solely to
extensional viscosity, and its increase with extensional
strain rate, since this is the only rheological difference
between the Newtonian and polymeric fluids. For thin-
ner filaments and faster thinning, the polymer molecules
stretch and cause an increase in extensional viscosity
without significant change in shear viscosity.

Measurements of the exponential rate of thinning
can thus be used to determine extensional viscosity,
an elusive quantity to measure. For the Newtonian
case, ηe ≈ 3ηs; for the polymeric case, the results
increase with extensional strain rate but much less
slowly than predicted by the FENE-P model. This
suggests the need for a better understanding of both the
molecule-scale behavior of polymers in extensional flows
as well as its connection to macroscopic rheology. Fila-
ment thinning in microchannels, and its variations with
polymer molecular weight, may be a promising approach.
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