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Millennial Northern Hemisphere (NH) temperature reconstruction (blue) 
and instrumental data (red) from AD 1000 to 1999, adapted from Mann et 
al. (1999).

IPCC report, 2001
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Fig. 1. Surface temperature anomalies relative to 1951–1980 from surface air measurements at meteorological 
stations and ship and satellite SST measurements. (A) Global annual mean anomalies. (B) Temperature anomaly for 
the first half decade of the 21st century.

Global Temperature  (Hansen et al., 2006)
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What generates the complex pattern of flow?

Density variations 

Effects of rotation
large scale motion- geostrophy

Mechanical forcing by wind

Fronts Lateral density variation

Baroclinic instability - eddy formation, mixing

Vertical motion
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Dρ

Dt
= SρWOCE - Atlantic section potential density 

1024-1029 kg/m3

Internal gravity waves Breaking leads to diapycnal mixing

N2 = −g
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Dense fluid collapse

MIT Synoptic Meteero. Lab

R. Goler, Meteoro. Inst, Munich

with rotation
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Dense fluid collapse
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2.1 Equations in a Rotating Frame 57

This relation applies to a vector B that, as measured at any one time, is the same in both
inertial and rotating frames.

2.1.2 Velocity and acceleration in a rotating frame

The velocity of a body is not measured to be the same in the inertial and rotating frames,
so care must be taken when applying (2.5) to velocity. First apply (2.5) to r , the position
of a particle to obtain !

dr

dt

"

I

D
!

dr

dt

"

R

C ˝ ! r (2.6)

or
vI D vR C ˝ ! r: (2.7)

We refer to vR and vI as the relative and inertial velocity, respectively, and (2.7) relates
the two. Apply (2.5) again, this time to the velocity vR to give

!
dvR

dt

"

I

D
!

dvR

dt

"

R

C ˝ ! vR; (2.8)

or, using (2.7) !
d
dt

.vI ! ˝ ! r/

"

I

D
!

dvR

dt

"

R

C ˝ ! vR; (2.9)

or !
dvI

dt

"

I

D
!

dvR

dt

"

R

C ˝ ! vR C d˝

dt
! r C ˝ !

!
dr

dt

"

I

: (2.10)

Then, noting that
!

dr

dt

"

I

D
!

dr

dt

"

R

C ˝ ! r D .vR C ˝ ! r/; (2.11)

and assuming that the rate of rotation is constant, (2.10) becomes
!

dvR

dt

"

R

D
!

dvI

dt

"

I

! 2˝ ! vR ! ˝ ! .˝ ! r/: (2.12)

This equation may be interpreted as follows. The term on the left-hand side is
the rate of change of the relative velocity as measure in the rotating frame. The first
term on the right-hand side is the rate of change of the inertial velocity as measured
in the inertial frame (or, loosely, the inertial acceleration). Thus, by Newton’s second
law, it is equal to force on a fluid parcel divided by its mass. The second and third
terms on the right-hand side (including the minus signs) are the ‘Coriolis force’ and
the ‘centrifugal force’ per unit mass. Neither of these are true forces — they may be
thought of as quasi-forces (i.e., ‘as if’ forces); that is, when a body is observed from a
rotating frame it seems to behave as if unseen forces are present that affect its motion.
If (2.12) is written, as is common, with the terms C2˝ ! vr and C˝ ! .˝ ! r/ on
the left-hand side then these terms should be referred to as the Coriolis and centrifugal
accelerations.1
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Coriolis accn Centripetal accn (modifies 
gravitational potential) 

Equations of motion
in a rotating frame
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+ ρ−1∇p + 2Ω× u +∇φ = ∇(ν∇u)
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Effects of rotation
We view the earth in the rotating frame
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Effects of rotation
We view the earth in the rotating frame
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φ

f ≡ 2Ω sin φ
b ≡ 2Ω cos φ

2Ω

Rossby
number

Du/Dt +
(

P

ρU2

)
px −

(
ΩL

U

)
fv =

( ν

UL

)
∇2u

For U = 0.1 m/s, L = 105 m, Ω = 10−4/s

Ro =
U

ΩL
<< 1 Re = UL/ν ∼ 1010

Horizontal 
Large Scale Dynamics 2Ω× u = (−fv + bw, fu, bu)

Du/Dt + Ro−1(px − fv + Roδ bw) = F x

Dv/Dt + Ro−1(py + fu) = F y

fv = px, fu = −py

Geostrophy
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∂p

∂z
= −ρg

Hydrostatic balance

wz = −Ro
−1(ux + vy)

W ∼ Ro δ U

px = ghx + rx

Hydrostatic Pressure gradient

rx =
∂

∂x

∫ h

z
ρdz

Ro =
U

ΩL
In the Vertical

Incompressibility

δ = D/L << 1

(
U

L

)
(ux + vy) +

(
W

D

)
wz = 0

Dw

Dt
+

1
Ro2δ

(
1
ρ
pz + g − δbu

)
= 0

At the sea surface

vg =
1
f

ghx, ug = − 1
f

ghy

ux + vy + wz = 0
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Sea surface
height 
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velocity
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from R. Williams

Ekman transport

from L.D. Stott

In the Boundary Layer 2Ω× u =
∂

∂z

(
Kv

∂u

∂z

)

fU KvU

H2

Incompressibility Ek =
Kv

fH2
E

= O(1) HE = (f/Kv)

2.12 The Ekman Layer 113

Consider either a top or bottom Ekman layer, and integrate over its thickness. From
(2.284) we obtain

f ! ME D z!t ! z!b (2.285)

where
ME D

Z

Ek
uE dz (2.286)

is the ageostrophic transport in the Ekman layer, and where z!t and z!b is the stress at
the top and the bottom of the layer. The former (latter) will be zero in a bottom (top)
Ekman layer. We can rewrite (2.285) as:

Top Ekman Layer: ME D ! 1

f
k ! z!t (2.287)

Bottom Ekman Layer: ME D 1

f
k ! z!b (2.288)

The transport in the Ekman layer is thus at right-angles to the stress at the surface. This
has a simple physical explanation: integrated over the depth of the Ekman layer the
surface stress must be balanced by the Coriolis force, which in turn acts at right angles
to the mass transport. This result is particularly useful in the ocean, where the stress at
the upper surface is primarily due to the wind, and can be regarded as independent of the
interior flow. If f is positive, as in the Northern hemisphere, then an Ekman transport
is induced 90° to the right of the direction of the wind stress. This has innumerable
important consequences — for example, in inducing coastal upwelling when, as is not
uncommon, the wind blows parallel to the coast. Upwelling off the coast of California
is one example. In the atmosphere, however, the stress arises as a consequence of the
interior flow, and we need to parameterize the stress in terms of the flow in order to
calculate the surface stress.

Finally, we obtain an expression for the vertical velocity induced by an Ekman
layer. The mass conservation equation is

@u

@x
C @v

@y
C @w

@z
D 0: (2.289)

Integrating this over an Ekman layer gives

r " Mt D !.wt ! wb/ (2.290)

where Mt is the total (Ekman plus geostrophic) transport in the Ekman layer,

Mt D
Z

Ek
u dz D

Z

Ek
.ug C uE/ dz # Mg C ME ; (2.291)

and wt and wb are the vertical velocities at the top and bottom of the Ekman layer; the
former (latter) is zero in a top (bottom) Ekman layer. From (2.285)

k ! .Mt ! Mg/ D 1

f
.z!t ! z!b/: (2.292)

2.12 The Ekman Layer 113

Consider either a top or bottom Ekman layer, and integrate over its thickness. From
(2.284) we obtain

f ! ME D z!t ! z!b (2.285)

where
ME D

Z

Ek
uE dz (2.286)

is the ageostrophic transport in the Ekman layer, and where z!t and z!b is the stress at
the top and the bottom of the layer. The former (latter) will be zero in a bottom (top)
Ekman layer. We can rewrite (2.285) as:

Top Ekman Layer: ME D ! 1

f
k ! z!t (2.287)

Bottom Ekman Layer: ME D 1

f
k ! z!b (2.288)

The transport in the Ekman layer is thus at right-angles to the stress at the surface. This
has a simple physical explanation: integrated over the depth of the Ekman layer the
surface stress must be balanced by the Coriolis force, which in turn acts at right angles
to the mass transport. This result is particularly useful in the ocean, where the stress at
the upper surface is primarily due to the wind, and can be regarded as independent of the
interior flow. If f is positive, as in the Northern hemisphere, then an Ekman transport
is induced 90° to the right of the direction of the wind stress. This has innumerable
important consequences — for example, in inducing coastal upwelling when, as is not
uncommon, the wind blows parallel to the coast. Upwelling off the coast of California
is one example. In the atmosphere, however, the stress arises as a consequence of the
interior flow, and we need to parameterize the stress in terms of the flow in order to
calculate the surface stress.

Finally, we obtain an expression for the vertical velocity induced by an Ekman
layer. The mass conservation equation is

@u

@x
C @v

@y
C @w

@z
D 0: (2.289)

Integrating this over an Ekman layer gives

r " Mt D !.wt ! wb/ (2.290)

where Mt is the total (Ekman plus geostrophic) transport in the Ekman layer,

Mt D
Z

Ek
u dz D

Z

Ek
.ug C uE/ dz # Mg C ME ; (2.291)

and wt and wb are the vertical velocities at the top and bottom of the Ekman layer; the
former (latter) is zero in a top (bottom) Ekman layer. From (2.285)

k ! .Mt ! Mg/ D 1

f
.z!t ! z!b/: (2.292)

∇ · ME = wE = ∇× τ

w_e from Williams

Kv
∂u

∂z
= τ/ρ
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14.2 Using Viscosity Instead of Drag 613

and using (14.34) this gives

  sin  y C B.y/ D 0: (14.36)

Thus, the boundary layer solution is:

" D !  sin  ye!x=!S : (14.37)

The composite (boundary layer plus interior solution) is

 D .1 ! x ! e!x=!S /  sin  y; (14.38)

or, in full dimensional form,

 D .1 ! x=a ! e!x=.a!S //  sin. y=a/ : (14.39)

This is a ‘single gyre’ solution. Two or more gyres can be obtained with a different
wind forcing, such as #x D !#0 cos.2 y/, as in Fig. 14.4.

It is a relatively straightforward matter to generalize to more arbitrary wind-stresses,
provided these also vanish at the two latitudes between which the solution is desired. It
is left as a problem to show that in general

 I D
Z x

xe

curlz!.x0;y/ dx0; (14.40)

and that the composite solution is

 D  I !  I .0;y/e!x=.xe!S /: (14.41)

14.2 USING VISCOSITY INSTEAD OF DRAG

A natural variation on on the Stommel problem is to use a harmonic viscosity, $r2%, in
place of the drag term !r% in the vorticity equation, the argument being that the wind-
driven circulation does not reach all the way to the ocean bottom so that an Ekman drag
is not appropriate. This variation is called the Munk problem or Munk model,8 and if
both drag and viscosity are present we have the ‘Stommel-Munk’ model. The particular
form of the lateral friction used in the Munk problem is still somewhat hard to justify
because it relies on an ill-founded eddy diffusion of relative vorticity (chapter 10). Our
treatment of this problem is relatively brief, concentrating only on those areas where
the problem differs from the Stommel problem. The problem is to find and understand
the solution to the (dimensional) equation

ˇ
@ 

@x
D curlz! C $r2% D curlz! C $r4 (14.42)

in a given domain, for example a square of side a. We need two boundary conditions
at each wall to solve the problem uniquely, and as before for one of them we choose
 D 0 to satisfy the no-normal-flow condition. For the other condition, two possibilities
present themselves:

610 Chapter 14. Wind-Driven Gyres

frictional term is small, meaning there is an approximate balance between wind-stress
and the ˇ-effect.5 Friction is small if jr!j !j ˇvj or

r

L
D f0ı

HL
! ˇ (14.19)

using r D fd=H where ı is the thickness of the Ekman layer and L is the horizontal
scale of the motion, and generally speaking this inequality is well satisfied for large-
scale flow. The vorticity equation becomes

ˇv " curlz z!; (14.20)

or Sverdrup balance.6 The observational support for Sverdrup balance is rather mixed,
discrepancies arising not so much from failure of (14.19), but from the presence of
small-scale eddying motion with concomitantly large nonlinear terms, and the presence
of non-negligible vertical velocities induced by the interaction with bottom topogra-
phy.7 Nevertheless, Sverdrup balance provides a useful, if not impregnable, foundation
on which to build.

Boundary-layer solution

For simplicity, consider a square domain of side a and rescale the variables by setting

x D ayx; y D ayy; z" D "0y" ;  D y "0

ˇ
(14.21)

where "0 is the amplitude of the windstress. The hatted variables are nondimensional
and, assuming our scaling to be sensible, these are O.1/ quantities in the interior. Eq.
(14.18) becomes

@ y 
@yx C #sr2 y D curlz y! (14.22)

where #s D .r=aˇ/ ! 1, in accord with (14.19). For the rest of this section we will
drop the hats over nondimensional quantities

Over the interior of the domain, away from boundaries, the frictional term is small
and an approximate solution may be obtained by simply dropping it, giving

@ I

@x
D curlz!; (14.23)

where  I is the interior streamfunction, or the ‘Sverdrup flow’. The solution of this
equation is

 I .x;y/ D
Z x

0

curlz!.x0;y/ dx0 C g.y/; (14.24)

where g.y/ is an arbitrary function of y, which thus gives rise to an arbitrary zonal
flow. The corresponding velocities are

vI D curlz!; uI D # @

@y

Z x

0

curlz!.x0;y/ dx0 # @g.y/

@y
: (14.25)
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of vertical integration; the resulting equations are linear, and the only external forcing
is that due to the wind-stress. The resulting model then, at the price of some compre-
hensiveness, gives a useful picture of the wind-driven circulation of the ocean.

14.1.1 The Stommel Model

The planetary geostrophic equations for a Boussinesq fluid are:

Db

Dt
D Pb; r ! v D 0; (14.1a,b)

f ! u D "r! C 1

"0

@!

@z
;

@!

@z
D b: (14.2a,b)

These equations are, respectively, the thermodynamic equation (14.1a), the mass con-
tinuity equation (14.1b), the horizontal momentum equation (14.2a), (i.e., geostrophic
balance, plus a stress term) and the vertical momentum equation (14.2b), (i.e, hydro-
static balance). These equations are derived more fully in chapter 5, but they are es-
sentially the primitive equations with the advection terms omitted in the horizontal mo-
mentum equation, on the basis of small Rossby number. Take the curl of (14.2a) (that
is, cross differentiate its x and y components) and integrate over the depth of the ocean
to give Z

f rz ! u dz C @f

@y

Z
v dz D curlz.z!t " z!b/ (14.3)

where the operator curlz is defined by curlzA # @Ay=@x " @Ax=@y D k ! r ! A,
and z! is the kinematic stress, z! D !="0. The divergence term vanishes if the vertical
velocity is zero at the top and bottom of the ocean. Strictly, at the top of the ocean
the vertical velocity is given by the material derivative of height of the ocean’s surface,
Dh=Dt , but on the large-scales that is negligible and setting it to zero is the rigid-
lid approximation. At the bottom of the ocean the vertical velocity is only zero if the
ocean in flat-bottomed; otherwise it is u ! r#b , where #b is the orographic height at the
ocean floor. The neglect of this topographic term probably the most restrictive single
approximation in the formulation of this model. Given this neglect, (14.3) becomes

ˇv D curlz.z!t " z!b/ (14.4)

where henceforth, in this section, quantities with an overbar are understood to be the
vertical integral over the depth of the ocean. If the stresses depend only on the velocity
fields then thermodynamic variables evidently do not affect the vertically integrated
flow.

At the top of the ocean, the stress is given by the wind. At the bottom, it is given
by bottom friction, and we assume that this may be parameterized by a linear drag, or
Rayleigh friction, as might be generated by an Ekman layer; it is this assumption that
particularly characterizes this model as that due to Stommel. Eq. (14.4) then becomes

ˇv D "r$ C W .x; y/ (14.5)

The wind-driven circulation

Take the curl and integrate over depth of BL

Sverdrup balance: Vertically integrated

Stommel model

Surface boundary condition

2Ω× u =
1
ρ

∂τ

∂z

ν
∂u
∂z

= τ/ρ
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SPG: NA

STG: NA

ECS: ATL

STG: SA

           WBC: 
BRAZIL CURRENT

         WBC: 
GULF STREAM

      WBC: 
KUROSHIO

   WBC:  EAST
AUSTRALIAN

STG: SP

ECS: PAC

STG: NP

SPG: NP

STG: SI

     WBC: 
AGULHAS

ACC
ACC

!"#$%&'()*+,-.%/0
12"*$&%(*+,*34,5%&'()*+,6(%)"+*$(&30
73$/%8.%/,*349&%,73$/%#*0(3,1:);*38/0
<&+*%,*34,!"#'&+*%,6"%%/3$,!.0$/=0

Fig. 14.1 A schema of the main currents of the global ocean. Key: STG –
Sub-Tropical Gyre; SPG – Sub-Polar Gyre; WBC – Western Boundary Current;
ECS – Equatorial Current System; NA – North Atlantic; SA – South Atlantic;
NP – North Pacific; SP – South Pacific; SI – South Indian; ACC – Antarctic
Circumpolar Current; ATL – Atlantic; PAC – Pacific.

except at the surface, the large-scale mean currents are fairly well mapped and Fig.
14.2 illustrates the average current pattern of the North Atlantic using a combination of
observations and a numerical model, and the Gulf Stream is clearly visible.2

For much of this chapter we consider a model, and variations about it, that explains
the large-scale features of ocean gyres and that lies at the core of ocean circulation
theory — the steady, forced-dissipative, homogeneous model of the ocean circulation
first formulated by Stommel.4 Such models explain many of the zeroth-order features
of the ocean, in particular the existence of gyres and the appearance of intense western
boundary currents. In the later part of the chapter we examine the vertical structure
of the wind-driven circulation, taking the stratification as given. In the two chapters
following we consider the maintenance of that stratification.

The wind-driven gyres
From Goeff Vallis
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196 CHAPTER 7. GEOSTROPHY AND VORTICITY

homogeneous geophysical flows, when a parcel of fluid is squeezed laterally (ds decreasing),
its vorticity must increase (f + ζ increasing) to conserve circulation.

Now, if both circulation and volume are conserved, so is their ratio. This ratio is par-

ticularly helpful, for it eliminates the parcel’s cross-section and thus depends only on local

variables of the flow field:

d

dt

(
f + ζ

h

)
= 0, (7.24)

where

q =
f + ζ

h
=

f + ∂v/∂x − ∂u/∂y

h
(7.25)

is called the potential vorticity. The preceding analysis interprets potential vorticity as circu-

lation per volume. This quantity, as will be shown on numerous occasions in this book, plays

a fundamental role in geophysical flows. Note that equation (7.24) could have been derived

directly from (7.18) and (7.20) without recourse to the introduction of the variable ds.
Let us now go full circle and return to rapidly rotating flows, those in which the Coriolis

force dominates. In this case, the Rossby number is much less than unity (Ro = U/ΩL " 1),
which implies that the relative vorticity (ζ = ∂v/∂x − ∂u/∂y, scaling as U/L) is negligible
in front of the ambient vorticity (f , scaling as Ω). The potential vorticity reduces to

q =
f

h
(7.26)

which, if f is constant – such as in a rotating laboratory tank or for geophysical patterns of
modest meridional extent – implies that each fluid column must conserve its height h. In
particular, if the upper boundary is horizontal, fluid parcels must follow isobaths, consistent

with the existence of Taylor columns (Section 7.2). If f is variable (see also Section 9.4)
and topography flat, the same constraint (7.26) tells us that the flow cannot cross latitudinal

circles, while in the general case, the flow must follow lines of constant f/h.
Before closing this section, let us derive a germane result, which will be useful later.

Consider the dimensionless expression

σ =
z − b

h
, (7.27)

which is the fraction of the local height above the bottom to the full depth of the fluid, or, in

short, the relative height above bottom (0 ≤ σ ≤ 1). This expression will later be defined as
the so-called σ-coordinate (see Section 20.6.1). Its material time derivative is

dσ

dt
=

1

h

d

dt
(z − b) −

z − b

h2

dh

dt
. (7.28)

Since dz/dt = w by definition of the vertical velocity and because w varies linearly from

db/dt at the bottom (z = b) to d(b + h)/dt at the top (z = b + h), we have

dz

dt
= w =

db

dt
+

z − b

h

dh

dt
. (7.29)

ζ = vx − uy

Conservation of Potential Vorticity
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Mesoscale
•O(104‐105m)
•Phenomenology: eddies, rings, jets, etc

Lateral variations in density

Sea Surface Temperature from Satallite

Gulf stream

from Marshall and Plumb  2006

Saturday, August 13, 2011



YZ

X

U

SSH

light

dense

fu = −py

Geostrophic balance

Hydrostatic balance
pz = −ρg

fuz = gρy

Thermal wind balance

b = −gρ′/ρ0

by
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Numerical Experiments
Periodic Channel

Initial Conditions

LIGHT

DENSE

50 km

100 km

Surface View

Sectional View

Free Surface

Density

Along-channel velocity

Varying resolution 1000-250m
Wind / no wind
Hydrostatic/Nonhydrostatic

Fig. 2. (a) Sequential figures of the surface density showing the evolution of the mixed 
layer instability over 45 days. (b) Hofmuller plot of the across front surface density (c) 
Hofmuller plot showing the evolution of the horizontally averaged buoyancy frequency 
over time. The buoyancy frequency is multiplied by 10^5 and is in s^{-1}. 
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Front - forms eddies and filaments

Density Rel. Vorticity /f 2d Strain rate /f
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Tracer dispersion

Badin, Tandon, 
Mahadevan, 2011 
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Tracer variance
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from Beron-Vera et al., 2008

Gulf of Mexico, June 2010

(ri − rj) = exp(λt)
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YZ

X

U

ζ/f = O(1), Ro = U/fL = O(1)

−by

H

W ∼ Ro δ U = δ U

δ = H/L = f/N

Vertical
velocity

where

N
2

Review on submesoscale processes: 
Thomas, Tandon, Mahadevan, 2008

Vertical transport 

Mahadevan & Tandon, 2006
Mahadevan, 2006

Fronts - Lateral gradients in density

Db

Dt
= 0

∂

∂y

Dby

Dt
= −uyby − vyby

Frontogenesis

b = − g

ρ0
ρ′
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Modeling

Hydrostatic δ → 0 wz = −Ro
−1(ux + vy)

ht + ∂x

∫ h

zb

udz + ∂y

∫ h

zb

vdz = 0Free-surface height
 ...and density  =>  p 

pz + ρg = 0

φ

f ≡ 2Ω sin φ
b ≡ 2Ω cos φ

2Ω

Well-posed with open boundaries

p = Hydrostatic pressure
q = Nonhydrostatic pressure

Dtu + Ro−1(px + δqx − fv + Ro δ bw) = F x

ux + vy + Ro wz = 0

Dtw + Ro−2δ−2(ρ−1pz + g + δqz − δ bu) = F z

Dtv + Ro−1(py + δqy + fu) = F y

Mahadevan et al., 1996a,b, Mahadevan & Archer 1998

Dtw + Ro−2δ−1(qz − bu) = F z

Ro =
U

ΩL

δ =

D

L

P = p + δq

Nonhydrostatic (   does not        0) δ →

W ∼ Ro δ U
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Nonhydrostatic Model
Using incompressibility qxx + qyy + δ−2qzz = F

Discretized ... 

3-D pressure field to be determined

Mahadevan et al., 1996a,b, Mahadevan & Archer 1998
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Solved efficiently using the multigrid method and line by line (block) relaxation.

(qi+1 − 2qi + qi−1) + (qj+1 − 2qj + qj−1) + δ−2(qk+1 − 2qk + qk−1) = F
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Near-surface
w

(upper 50m)

Surface 
Density

(Mahadevan and Tandon, 2006)

At higher (1 km) model resolution, we find that:
The largest vertical velocities O(100m/day) occur where the Rossby number becomes O(1). 
Circulation not in geostrophic / thermal-wind balance -- has a large vertical component.

lateral density 
gradients are 

present.
Ro = relative/ planet. vort

Small Ro 
dynamics 
does not 

apply

Strong vertical velocities 

~100 m/d
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with D/Dt = ∂/∂t+(ug +uag) ·∇, and are valid if D2u/Dt2 " f 2u and D2v/Dt2 " f 2v,

i.e. if the Lagrangian timescale of variability of the flow is much longer than an inertial

period [Hoskins , 1975].

3.1.1. Two-dimensional vertical circulation

Consider a front in the y-z plane, i.e. by #= 0 and bx = 0, where the along-front velocity

u is purely geostrophic, i.e., u = ug, and in thermal wind balance; fugz = −by. The

two dimensional ageostrophic circulation can be described by an across-front overturning

stream function ψ, where (vag, w) = (ψz,−ψy). As first derived by Eliassen [1948]; Sawyer

[1956], a single equation for ψ can be constructed by combining the y derivative of the

buoyancy equation (3), with the z derivative of the zonal component of (1), yielding

F 2
2

∂2ψ

∂z2
+ 2S2

2

∂2ψ

∂z∂y
+ N2∂2ψ

∂y2
= −2Qg

2, (5)

where N2 = bz, S2
2 = −by = fugz, F 2

2 = f(f − ugy), and Qg
2 is the y-component of the

Q-vector

Qg = (Qg
1, Q

g
2) =

(
−∂ug

∂x
·∇b,−∂ug

∂y
·∇b

)
(6)

introduced by Hoskins et al. [1978]. A geostrophic flow with a nonzero Q-vector will

modify the magnitude of the horizontal buoyancy gradient following the equation

D

Dt
|∇hb|2 = Qg ·∇hb (7)

and will consequently disrupt the thermal wind balance of the flow. To restore geostrophy

an ageostrophic secondary circulation is required, and its solution is governed by (5).

Although (5) is formally valid only for two-dimensional ageostrophic motions, it is useful

for diagnosing the importance of various mechanisms in generating an ASC and large

vertical velocities in the presence of lateral buoyancy gradients. A three-dimensional
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version of this equation, with diabatic and frictional effects, is thus presented and discussed

in Section 3.1.3.

The solution to (5) can be found using the method of Green’s functions. The Green’s

function for ψ satisfies the following equation

F 2
2

∂2G

∂z2
+ 2S2

2

∂2G

∂z∂y
+ N2∂2G

∂y2
= δ(y − Y , z − Z), (8)

which, for any Q−vector distribution yields the ageostrophic circulation: ψ = −2
∫∫

G(y−

Y , z − Z)Qg
2(Y ,Z)dYdZ + ψh, where ψh is a homogeneous solution to (16) that ensures

that ψ satisfies the boundary conditions. The solution to (8) for constant coefficients is

G =
1

4π
√

fq2D
log |Arg|; Arg =

[(y − Y)− (z − Z)S2
2/F

2
2 ]2

L2
SG

+
(z − Z)2

H2
(9)

where

LSG = H

√
fq2D

F 2
2

(10)

is the semi-geostrophic Rossby radius of deformation, H is a characteristic vertical length-

scale of the flow, and

q2D =
1

f
(F 2

2 N2 − S4
2) = fN2

[
1 + Ro2D −

1

Ri2D

]
(11)

is the PV of the geostrophic flow if it were purely zonal and two-dimensional, i.e.

Ro2D = −ugy/f and Ri2D = N2/(ugz)2 [Eliassen, 1951; Hakim and Keyser , 2001] From

the dependence of (9) on the PV, it can be seen that a solution does not exist for

fq2D < 0, indicating that the conditions under which a unique solution for (5) can

be found is fq2D > 0. G is plotted in figure 1 for a buoyancy field that decreases in

the y−direction (S2
2 > 0). Streamlines take the shape of tilted ellipses oriented at an

angle θ = 0.5 tan−1[2S2
2/(N

2 − F 2
2 )]. For typical conditions, F 2

2 # |S2
2 | # N2, the el-

lipses are oriented parallel to isopycnals, tan θ ≈ S2
2/N

2, and the secondary circulations

D R A F T February 11, 2007, 9:27pm D R A F T

Potential vorticity =

Semi-geostrophic: higher order in Ro

<  generally positive, but when it 
changes sign, this is not solvable
Loss of balance -- leads to vertical 
motion and mixing.

A simpler model for circulation in the vertical plane

Ro

Vertical velocity along 
Section A-B

A

B

A closer look at a single feature

Frontogenesis

b =
−gρ;

ρ0
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Summary

On large scales, the wind drives the ocean 

Stratification and  rotation inhibit vertical motion

Lateral dispersion is highly non-uniform

Fronts - generate large vertical velocities
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