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The dynamics of vapor bubbles in acoustic pressure fields
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In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and
thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper
examines numerically the validity of some asymptotic-theory predictions such as the existence of
two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a
small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and
continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena
therefore play a role for a few cycles at most, and reaching a limit size—if one exists at all—is
found to require far more than several tens of thousands of cycles. It is also found that some small
bubbles may grow or collapse depending on the phase of the sound field. The model accounts in
detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an
approximate formulation valid for bubbles small with respect to the thermal penetration length in the
vapor is derived and its accuracy examined. The present findings have implications for acoustically
enhanced boiling heat transfer and other special applications such as boiling in microgravity.
© 1999 American Institute of Physics.@S1070-6631~99!02208-4#
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I. INTRODUCTION

Acoustic cavitation has provided a strong incentive
the study of the dynamics of gas bubbles in oscillating pr
sure field~see, e.g., Refs. 1–3!, but the understanding of th
corresponding problem for vapor bubbles is, relative
speaking, less developed.

In practice, oscillating vapor bubbles are encountered
acoustic cavitation in cryogenic liquids,4,5 the propagation of
pressure waves and shocks in boiling channels~see, e.g.,
Refs. 6–8!, and acoustically enhanced boiling heat trans
~see, e.g., Refs. 9–13!.

More recently, it has been proposed that acoustic ra
tion forces may be used to remove bubbles from heated
faces in microgravity,14 thus avoiding the premature boilin
crisis typically encountered in such conditions~see, e.g.,
Refs. 15 and 16!. It is well known that the direction of thes
forces depends on whether the bubble is driven above
below resonance. The resonance properties of vapor bub
therefore determine the appropriate frequency range for
application. Early papers on the subject17–19reported the ap-
parent existence of two resonant radii for a given sound
quency, an intriguing aspect that has been subsequently
ied by Marston and Greene,20 Marston,21 Khabeev,22 Nagiev
and Khabeev,23 and others.

Most of the theoretical work was carried out analytica
under the severe restriction of linear or weakly nonline
oscillations, and it is not clear how the features that
brought to light would affect the motion of vapor bubbl
under strong forcing. It is the purpose of the present stud
carry out a numerical investigation of this regime of oscil
tion comparing the results with the predictions of earlier a
lytical theories.
2001070-6631/99/11(8)/2008/12/$15.00
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II. MATHEMATICAL FORMULATION

Even with the assumption of sphericity, the comple
problem of a vapor bubble undergoing nonlinear radial p
sations in a sound field is a complex problem, as its ex
solution requires a consideration of the equations of con
vation of mass, momentum, and energy in the liquid and
the vapor coupled by suitable interface conditions. It is, ho
ever, possible to considerably simplify the problem with t
aid of reasonable approximations.

In the first place, the volume expansion coefficient
many refrigerants at their normal boiling point is typical
small, of the order of 1023 K21, e.g., 1.9031023 K21 for
ammonia at 239.75 K, 1.9631023 K21 for refrigerant 12 at
243.2 K, and 0.75031023 K21 for water at 373.15 K. Thus
with temperature oscillations of the order of a few degre
thermal expansion is small and can be neglected. Second
condition of conservation of mass across the liquid–va
interface stipulates that

ṁ[rV~Ṙ2v !5rL~Ṙ2u!, ~1!

where ṁ is the interfacial mass flux~positive for evapora-
tion!, rV andrL are the vapor and liquid densities,v andu

the corresponding velocities, andṘ the velocity of the inter-
face. This relation shows that the difference between the
uid and interface velocities isṁ/rL . For water, for example,
even for heat fluxes as large as 1 MW/m2, the mass flux is
about 1 kg/m2 s, which givesuu2Ṙu;1023 m/s, that is com-
pletely negligible in comparison with typical values ofṘ of
the order of 1 m/s or greater. Hence, the approximationu

.Ṙ is completely reasonable.
These arguments show that, even in boiling conditio

the liquid motion can be handled in the same way as for
more familiar case of gas bubbles in a ‘‘cold’’ liquid. It i
8 © 1999 American Institute of Physics
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well known that, in such a case, a good model for the ra
dynamics of the bubble is furnished by the Kell
equation24–26

S 12
Ṙ

c
DRR̈1

3

2
S 12

1

3

Ṙ

c
D Ṙ2

5
1

rL
S 11

Ṙ

c
1

R

c

d

dt
D @pB2P~ t !#1O~c22!. ~2!

In this equation dots denote time derivatives,c is the speed
of sound in the liquid,P5P(t) denotes the sum of the stat
ambient pressure and the time-dependent pressure field
ing the bubble into oscillation, andpB is the pressure on th
liquid side of the interface, related to the bubble intern
pressurep by the balance of normal stresses across the in
face, namely

p5pB1
2s

R
14m

Ṙ

R
, ~3!

in which s is the surface tension coefficient andm the liquid
viscosity. In the present study we consider ambient press
of the form

P~ t !5p`2PA sinvt, ~4!

where p` is the static pressure,PA the acoustic pressur
amplitude, andv the sound angular frequency.

While we include liquid compressibility effects in th
radial equation~2! to account for energy losses by acous
radiation, we can neglect such effects in the liquid ene
equation in view of the fact that, in any case, the liqu
temperature field is affected by the bubble only over regi
that are much smaller than the wavelength of sound. We
write

]TL

]t
1

R2Ṙ

r 2

]TL

]r
5

DL

r 2

]

]r S r 2
]TL

]r D , ~5!

whereTL is the liquid temperature, (R2/r 2)Ṙ is the incom-
pressible velocity field at a distancer from the bubble center
andDL denotes the thermal diffusivity of the liquid.~Strictly
speaking, we should writeu in place ofṘ in this equation,
but the difference is negligible.!

A standard simplification in the dynamics of gas bubb
in sound fields of moderate amplitude is to treat the bub
internal pressure as spatially uniform.27 This approximation,
which hinges on the smallness of the Mach number of
vapor flow, holds also in the case of vapor bubbles, a
actually even more so in view of the fact that the acous
pressures of interest are usually smaller than in acoustic c
tation. It can be shown that, from this approximation a
from the assumption of perfect-gas behavior of the vap
one can derive the following expression for the vap
velocity:27–30

v5
1

gp F ~g21!kV

]TV

]r
2

1

3
r ṗG , ~6!
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whereg is the ratio of the specific heats andkV the thermal
conductivity. The unknown vapor temperature field can th
be found from the energy equation in the form

rVcpVS ]TV

]t
1v

]TV

]r D2 ṗ5
1

r 2

]

]r S kVr 2
]TV

]r D , ~7!

wherecpV is the vapor specific heat at constant pressure
The conservation of energy at the interface requires

kL

]TL

]r U
r 5R

2kV

]TV

]r U
r 5R

5Lṁ, ~8!

whereL is the latent heat. Upon expressingṁ by means of
~1! andv by ~6!, this relation gives

kL

]TL

]r U
r 5R

5LrVRS Ṙ

R
1

ṗ

3gp
D 1

cs

cpV
kV

]TV

]r U
r 5R

, ~9!

where

cs5cpV2
L

Ts
~10!

is the specific heat along the saturation line. For water
100 °C,cs /cpV.21.45.

Due to kinetic effects, strict thermodynamic equilibriu
does not prevail at an interface during phase change~see,
e.g., Ref. 31!. When the accommodation coefficient is n
too small, these effects become appreciable only when
vapor Mach number approaches 1, which is far from
conditions that may reasonably be expected in the prob
considered here. Such effects can also be important at
quencies high enough to be comparable with the inverse t
for molecular relaxation. According to Gumerov,32,33 the
condition for the validity of thermodynamic equilibrium is

4p~g21!kVTv

b2grVL2 !1, ~11!

where b is the accommodation coefficient. Even forb as
small as 0.04, at 1 kHz the value of this quantity is of t
order of 1025, which shows that thermodynamic nonequili
rium effects are negligible.

On the basis of these considerations, we take the liq
and vapor temperature at the interface to have the same v
TS , and the vapor pressure to be given by the satura
relation

p5psat~TS!, ~12!

with its derivative along the saturation line expressed by
Clausius–Clapeyron relation

dp

dTs
U

sat

5
LrV

Ts
. ~13!

In view of the approximation of spatially uniform pressur
~12! gives the pressure everywhere in the bubble once
surface temperature is known. The local value of the te
perature, however, varies from place to place according
the energy equation~7!. The local value of the vapor densit
is given by the perfect-gas equation of state,
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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rV5
g

g21

p

cpVTV
. ~14!

III. LINEAR THEORY

In order to better appreciate the numerical results
scribed in the next section it is useful to begin by a br
consideration of the linearized theory. Several versions
this theory, with a varying degree of complexity, have
ready been developed in the literature34–36 and an abbrevi-
ated treatment will be sufficient.

It is postulated that the bubble can be dynamically s
bilized around an average radiusRe to be determined. Fo
linear oscillations, from the normal stress condition~3! it is
clear that this is only possible provided that

p05p`1
2s

Re
, ~15!

wherep` is the static pressure andp0 the mean pressure i
the bubble. Under the action of the sound field, there is a
transport of heat into the bubble that causes a tempera
rise and a consequent diffusive heat flux out of the bubble
steady regime is reached when the two fluxes balance
other. In this dynamically stabilized state the mean bub
surface temperatureTS0 is the saturation temperature corr
sponding top0 and is higher than the undisturbed liqu
temperatureT` . Furthermore, the liquid static pressure
also allowed to differ from saturation, and one writes

p`5psat~T`!1Dp. ~16!

The linearization follows the standard procedure. O
sets

P5p`1PA exp~ ivt !, R5Re1DR exp~ ivt !,

p5p01DpV exp~ ivt !, ~17!

TS5TS01DTS exp~ ivt !, TV5TS01DTV~r !exp~ ivt !,
~18!

whereD identifies the perturbation of the corresponding va
able. The surface temperature perturbationDTS is related to
DpV as dictated by the saturation condition. The tempera
field in the liquid is written as

TL5T`1
Re

r
~TS02T`!1DTL~r !exp~ ivt !. ~19!

A consistent linearization of the mathematical model lea
then to a system of linear equations that is readily solved
particular,

DR

PA
5

1

rLRe

2 i

v0
212ibv2v2 . ~20!

Herev0 andb play the formal role of natural frequency an
damping parameter for the bubble oscillations and are gi
by

v0
25

1

rLRe
2 S 3

Kr2BKi

Kr
21Ki

2 2
2s

Re
D , ~21!
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3

2vrLRe
2

Ki1BKr

Kr
21Ki

2 . ~22!

In these equationsK52(1/V)dV/dp, whereV is the bubble
volume, and can therefore be understood as the~complex!
bubble compressibility; explicitly,

K[Kr1 iK i5
1

gp0
13

cs

L S g21

g

TS0

p0
2

dTs

dp D
3F DV

ivRe
22A DV

ivRe
2 cothSAivRe

2

DV
D G

2
3ikL

rVLvRe
2 S 11AiRe

2v

DL
D dTs

dp
, ~23!

while

B52
kL

rVLDL

dTs

dp S Dp1
2s

Re
D F123FSARe

2v

2DL
D G 2DL

Re
2v

,

~24!

with

F~x!5x4E
0

` exp@2~11 i !t#

~x1t !5 dt. ~25!

In ~23! DV is the vapor thermal diffusivity. When the bubb
is small compared with the thermal penetration depth in
gas, these expressions reduce to those of Alekseev.34

Over a broad parameter range, for a fixed sound
quencyv, a graph ofDR vs Re shows two peaks, which
suggests the presence of two distinct resonant radiiRr and
Ru for a vapor bubble.17,18 It will be shown below that the
smaller one of the two radii does not actually correspond
a true resonance but is unstable. Alternatively, setting to z
the real part of the denominator of~20!, one finds two values
of v for each value of the radius. A typical example of su
results is shown in Fig. 1 for the case of water. Here the s

FIG. 1. The U-shaped lines portray the value of the frequency where the
part of the denominator of the radius perturbation amplitude~20! vanishes.
——T`5100 °C, p`5psat(T`); – – T`580 °C, p`5psat(T`); -•-• T`

580 °C, p`51 atm. The upper straight dashed line is the approximat
~31! and the lower one the approximation~34!.
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2011Phys. Fluids, Vol. 11, No. 8, August 1999 Dynamics of vapor bubbles in acoustic pressure fields
line is for T`5100 °C Dp50, the dashed line forT`

580 °C Dp50, and the dash-and-dot line forT`580 °C,
Dp/p`50.533, which is equivalent top`51 atm. The
curves have two branches, the upper one of which co
sponds toRr and the lower one toRu . The two branches join
at a value of the radius below which no resonance exists

At first sight it might appear surprising that a bubb
containing only vapor exhibits any stiffness at all, let alo
two distinct resonances. The key to these phenomena is
found in the temperature dependence of the saturation p
sure. More specifically, consider a vapor bubble the rad
Re of which decreases by an amountDR. This tends to cause
the condensation of an amount of vapor

DmV54pRe
2rVDR. ~26!

If the process occurs with a frequencyv, the latent heat
LDmV liberated by the condensation increases the temp
ture of a shell of liquid of thickness;ADL /v by an amount

4pRe
2ADL

v
rLcLDTS5LDmV , ~27!

with cL the liquid specific heat. This heating of the bubb
surface increases the saturation pressure by an amountDpV

5(dp/dTs)DTS , where the derivative is taken along th
saturation line. A force tending to resist compression is g
erated in this way,

F54pRe
2DpV[2KDR, ~28!

where the following expression for a ‘‘stiffness paramete
K follows from the previous argument:

K54pRe
2A v

DL

LrV

cLrL

dpV

dTs
54pRe

2A v

DL

~LrV!2

cLrLT`
. ~29!

The Clausius–Clapeyron relation~13! has been used in th
second step. The added mass for a sphere in radial moti
given byM54pRe

3rL , and therefore~29! enables one to
estimate the resonance frequencyv0 of the vapor bubble by
v0

25K/M or

v0
25A v

DL

~LrV!2

RecLT`rL
2 . ~30!

If vÞv0 , this relation gives the position of the pole of th
response function ofDR(t) when the bubble is driven at th
frequencyv. By settingv5v0 , on the other hand, we find
the natural frequency of the bubble as

v0
3Rr

2.Q1

L4rV
4

rL
3cLT`

2 kL
, ~31!

wherekL is the liquid thermal conductivity and a numeric
constantQ1 has been introduced to account for the appro
mate nature of the derivation. With the valueQ150.56, the
previous argument gives the upper dotted straight line in F
2, which is seen to be in close agreement with the ex
result. For comparison, it may be recalled that the natu
frequency of a gas bubble in adiabatic oscillation at a pr
surep` , with the neglect of surface tension, is given by
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2Rr

25
3gp`

rL
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This expression—and in particular its dependence on
bubble size—is very different from~31!.

The second, lower resonance may be understood as
lows. At low frequency, inertia and damping are small a
can be ignored. The main effects are the restoring force
viously described and the surface tension force

4pRe
2DS 2s

R D[2KsDR. ~33!

These two forces tend to oppose each other and, in suit
conditions, can balance. This circumstance leads to an o
lating system forced by the sound field, but with a negligib
small restoring force. The oscillation amplitude is then lar
which superficially looks like a second resonance. Proce
ing as before, equating~28! and ~33!, and again adjusting a
numerical constant, we find

v0Ru
45Q2DLS 2scLrLT`

~LrV!2 D 2

. ~34!

This result is shown by the lower straight dotted line in F
1 for Q250.94; again there is a fairly good agreement w
the exact one. This physical argument also shows, howe
the true nature of this second ‘‘pseudoresonance.’’ Indee
the bubble radius is smaller than this ‘‘resonant’’ value, t
surface tension effect is so large as to give rise to a nega
stiffness and the bubble will collapse unstably. Conversely
will grow for a bigger value of the radius.

So far the equilibrium radiusRe is an arbitrary param-
eter, given which the preceding formulas determine re
nance frequency, pressure amplitude, etc. As shown
Alekseev,34 the linear theory can be extended to a wea
nonlinear one capable of determining a value ofRe for a
given acoustic pressure amplitudePA . The result of this
analysis is~see also Refs. 35,36!

FIG. 2. Relation between the normalized pressure amplitude and the m
mum radiusRe according to the quasilinear theory of Ref. 34, Eq.~35!, at
three different frequencies. The dots mark the resonant radii of Fig. 1.
dashed portions of the lines are unstable, the solid ones stable. The liqu
saturated water at 1 atm.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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S 2

3
Kr2

csRe~dTs /dp!

2LA2DL /v
2

d2Ts /dp2

4dTs /dp
2

1

36
rLv2Re

2uKu2D PA
2

5U12
1

3
KS 2s

Re
1rLv2Re

2D U2S Dp1
2s

Re
D . ~35!

A graph of this curve, again for the case of water at 100
with Dp50, is shown in Fig. 2 for several acoustic freque
cies. For each frequency, the two resonant values of the
dius of Fig. 1 are marked by dots. Equation~35! has been
improved by Gumerov,33 whose results, however, are ve
close for the cases considered here.@In Fig. 2 the slight shift
of Ru from the local minimum is due to the fact that the pe
of DR given by~20! does not exactly coincide with the van
ishing of the real part of the denominator, which is the co
dition used to calculateRu .# The portion of the curve to the
left of the larger resonance radiusRr is dashed and corre
sponds to a condition of unstable equilibrium, while the p
tion to the right is predicted to be stable. Notice that t
derivation of the result~35! requires the assumption that th
temperature field in the neighborhood of the bubble has
bilized to steady periodic conditions.

In summary, the key predictions of the linear theory th
will be examined numerically in the light of the fully non
linear model of Sec. II are:~a! the existence of a resonan
radius;~b! the existence, at a given pressure amplitude, o
smallest value of the radius below which the bubble can
be dynamically stabilized;~c! the existence, at a given pre
sure amplitude, of a largest value of the radius that functi
as an attractor for bubbles with different initial radii.

IV. NUMERICAL RESULTS

A numerical solution of the system of equations d
scribed in Sec. II has been obtained by means of a spe
approximation to the temperature fields in the vapor and
the liquid. We have found that the numerical treatment of
problem is quite delicate and the results are sensitive eve
comparatively small errors. Details of the method and of
validation of the code are provided in the Appendix. All th
results shown here are for water.

Figure 3 shows the behavior of the bubble radius, n
malized by the linear resonance radiusRr52.71 mm, as a
function of time forv/2p51 kHz, PA50.4 atm. The liquid
is water atT`5100 °C andp`51 atm, so thatDp50. The
initial value of the radius is 35mm, which is slightly larger
than the linear pseudoresonant radiusRu that equals 21mm
in this case. It is seen that the bubble starts growing imm
diately due to the phenomenon of rectified heat transfer19 and
develops a distinct nonlinear response first with a weak th
harmonic and then a prominent second harmonic during
first few cycles. The resonant radii at three and two times
driving frequency are 0.913 and 1.26 mm, which correspo
to normalized values of 0.34 and 0.46. These harmonic c
ponents therefore develop as a nonlinear effect much a
the case of gas bubbles.37,38 Most likely a similar nonlinear
behavior is responsible for the subharmonic emissions
served by Neppiras and Finch,4 in their study of acoustic
cavitation in cryogenic liquids. When the mean radius a
Downloaded 14 Aug 2005 to 128.220.28.56. Redistribution subject to AIP
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proaches the resonant valueRr , the oscillation amplitude
increases substantially and the growth rate of the bubble
respondingly accelerates. Above this phase of rapid grow
the growth rate changes markedly to a very low value t
keeps decreasing. Qualitatively similar results for liquid
trogen and hydrogen have been published by Akuliche39

We have found the same behavior in all the cases we h
investigated, some further examples of which are shown
Fig. 4 for the same conditions as Fig. 3 but with differe
values ofPA . In some cases we have continued the integ
tion for several tens of thousands of cycles, always findin
decreasing growth rate that, although small, is definitely
zero. These results are at variance with the linear the
prediction of the existence of a limiting value for the radiu
Further comments on this matter will be found in the ne
section.

Figure 5 shows the mass flux at the bubble interfa
~positive for evaporation! for the highest-amplitude cas
(PA50.8 atm) of Fig. 4. The very large values of the
fluxes are worthy of note. Even during the later period

FIG. 3. Bubble radius~normalized by the linear resonant radiusRr

52.71 mm! versus time for saturated water at 1 atm. The sound amplitud
0.4 atm and the frequency 1 kHz.

FIG. 4. As in Fig. 3 for different acoustic pressure amplitudesPA .
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2013Phys. Fluids, Vol. 11, No. 8, August 1999 Dynamics of vapor bubbles in acoustic pressure fields
slow growth and relatively small-amplitude oscillation, th
mass flux is about 0.7 kg/m2 s, which is equivalent to a hea
flux of 1.5 MW/m2.

If the integration is started from a radius near limit val
of linear theory, the bubble is found to first shrink and th
slowly turn around and start growing. This behavior can
explained by the fact that the evolution of the temperat
field in the neighborhood of the bubble takes a large num
of cycles but, once a quasisteady temperature distribution
been attained, growth sets in. The nonoscillatory compon
of the temperature field@cf. the second term in the right-han
side of~19!# is significant over a distance of orderR from the
bubble, and the time required for a temperature perturba
to reach this distance is of the order ofR2/DL . The total
number of cycles needed is therefore of the order
vR2/2pDL . For v/2p;1 kHz, R;1 mm, this is of the or-
der of 10 000, which is in agreement with the numerical e
dence. This extremely long development time of the te
perature distribution in the neighborhood of the bubble i
significant difficulty in the computational study of these ph
nomena not only in terms of computer resources but, m
significantly, of accuracy requirements.

In view of the slow development of the temperatu
field, it is also difficult to study the bubble behavior in th
neighborhood of the unstable valueRu predicted by the lin-
ear theory and shown by the lower branch of the lines in F
1. Ideally, it would be necessary to start the calculation w
an already fully developed temperature field, which is clea
not feasible. Some typical results obtained with the init
condition TL5T` are shown in Fig. 6 for the same cond
tions as in Figs. 3 and 4. The frequency is 1 kHz and
initial radius 35mm which, according to the result shown
Fig. 2, would require an acoustic pressure in excess of 0.
atm for bubble growth. The numerical results show inste
that, for values ofPA smaller than 0.1 atm, the radius ten
to zero, implying a complete collapse of the bubble. T
difference between this value and the linear theory predic
is likely due to the different initial temperature distribution
in the liquid. For PA>0.1 atm, however, the bubble star
growing immediately. Qualitatively the result is therefore

FIG. 5. Mass flux at the bubble wall~positive for evaporation! for the case
in Fig. 4 with PA50.8 atm.
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predicted, although it is found that the outcome of the p
cess is also sensitive to the phase of the pressure field a
start of the calculation. If the initial phase is one of compre
sion ~which can be simulated by using a negative value
PA!, rather than expansion, we find collapse even foruPAu
.0.1, as shown in Fig. 7.

If the liquid is superheated, so thatDp,0, the bubble
will grow spontaneously provided the effect of surface te
sion is sufficiently weak. An interesting consequence of r
tified heat transfer is the possibility to accelerate this grow
An example is shown in Fig. 8 whereDp520.1 atm, which
corresponds to a water superheat of 2.3 K; the acoustic p
sure amplitudes are 0, 0.2, and 0.4 atm. It is evident t
there is a striking effect on the bubble growth rate, whi
might be useful to enhance boiling heat transfer in cert
situations. The effect is, however, much less dramatic as
liquid superheat is increased, as Fig. 9 shows forDp
520.2 atm, which corresponds to a superheat of 4.8 K. T
oscillating lines are forPA50.2 and 0.5 atm.

FIG. 6. Bubble behavior near the unstable region of Fig. 2 for satura
water at 1 atm and different acoustic pressure amplitudes. The initial bu
radius is 35mm and the acoustic frequency 1 kHz.

FIG. 7. Effect of the sound phase on the behavior of a bubble near
unstable region of Fig. 2 forR(0)5185mm; other conditions as in the
previous figure. Solid line:PA520.8 atm; dashed linePA50.8 atm.
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It is well known that gas bubbles driven by a sufficien
large acoustic pressure exhibit chaotic behavior.40,41 We
have not encountered any trace of such behavior for the
por bubbles studied in this paper. Only if the interfacial e
ergy balance relation~8! is approximated by~37!, derived in
the Sec. VI, does one encounter a chaotic response. It
pears probable therefore that, with the full model, cha
could be found at a stronger forcing, although the assu
tion of sphericity would most likely be inapplicable in the
conditions.

V. LIMITING RADIUS

As mentioned in the previous section, our results
incompatible with the linear-theory prediction of a limitin
value of the radius. Very recently, Gumerov42 has consider-
ably extended the analytical theory by using a multiple-tim
scale approach coupled with a singular-perturbation tr
ment of the temperature field near the bubble. He finds t

FIG. 8. Effect of a sound field on bubble growth in water at 1 atm with a
K superheat at 1 kHz. The three lines are, in ascending order, forPA50, 0.2,
and 0.4 atm. The initial bubble radius is 100mm andRr52.71 mm.

FIG. 9. As in Fig. 8 for a superheat of 4.8 K at 10 kHz. The initial radius
10 mm and the resonant radius 0.17 mm. The pressure amplitudes are 0
and 0.5 atm.
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up to a certain order of accuracy in the acoustic press
amplitude, the average growth rate of the bubble equa
certain expression. By equating this expression to zero
predicts a limiting value of the radius in qualitative agre
ment with the linear theory result. From his analysis, ho
ever, it is not possible to determine what would be the eff
of keeping more and more terms in the expansion. It co
be that the limiting value of the radius would increase at e
order of the perturbation calculation, which would esse
tially confirm our results.

In the conventional linear theory it is assumed that
liquid temperature near the bubble has reached a quasist
distribution. This assumption is strictly correct only
threshold conditions, where the net heat flux into the bub
vanishes. In reality, as the average bubble radius grow
shrinks, there is a slowly evolving average temperature fi
superimposed on the oscillatory temperature distribution
could be that failure to account for this feature is respons
for the result of a limiting value of the radius in the line
theory. This effect is included~approximately! in Gumerov’s
analysis but it does not change the final prediction.

We have validated our calculations by repeating th
many times with different values of the numerical para
eters such as the number of terms retained in the spe
expansion, error tolerance, etc., always with the same res
We are thus confident that this prediction is not a numer
artifact, at least up to several hundred cycles. Gumerov43 has
independently confirmed our calculations by a different n
merical method. He estimates that the problem might lie
the fact that reaching the limiting radius might require se
eral hundred thousand or even millions of cycles.43 If so, a
fully numerical investigation of the matter would place e
treme demands on both computing resources and nume
accuracy and is clearly not feasible with our techniques.

Unfortunately, one cannot turn to experiment to reso
the question. The scant available experimental evidenc
ambiguous and the accuracy with which experimen
parameters—in particular the sound pressure amplitud
the location of the bubble—are known not very good~in this
connection see comments in Ref. 44!. Marston 45 studied
vapor bubbles in He II at 2.09 K and found a continuo
growth until the bubbles became unstable and broke up.
later experiment with He I at 4.2 K, Marston and Green20

observed circular arcs of seemingly stable vapor bubbles.
have tried to reproduce these results but have encount
the fundamental difficulty that the predicted surface tempe
ture of a He I bubble exceeds the critical point during t
compression phase of the oscillations. In view of its ve
large thermal conductivity, a bubble in He II has essentia
no stiffness. In both cases, therefore, the physical situatio
quite different from that of ordinary liquids studied in th
paper.

For a liquid like water in ordinary conditions at freque
cies in the kHz range, the practical consequences of
unresolved point are minor as the predicted limit radius
unrealistically large~tens of centimeters! and therefore out-
side the range of practical interest. For other liquids, or
higher frequencies, however, the situation would be diff
.2,
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ent. Experiments directly addressing this matter would be
great interest.

VI. NEARLY ISOTHERMAL CASE

The model of Sec. II is somewhat complex and it
desirable to develop accurate simplifications of it. We co
sider here the case in which the bubble interior can be c
sidered nearly isothermal. The most straightforward appl
tion of this idea can be based on the identity

4pR2rV~Ṙ2v !5
d

dt S 4pE
0

R

r 2rVdr D , ~36!

which is easily proven with the aid of the continuity equ
tion. If it is assumed that the phase change at the bub
surface is dominated by the liquid-side heat transfer, and
the bubble density is spatially uniform, the interfacial ener
condition ~8! then gives

4pR2kL

]TL

]r U
r 5R

5L
d

dt S 4

3
pR3rVD , ~37!

an approximation that has been extensively used in the b
ing literature~see, e.g., Ref. 46, Chs. 6 and 7!.

In order to examine the validity of this expression a
possibly extend it, it is useful to proceed formally on t
assumption that the square of the ratio between the cha
teristic bubble radius and the thermal penetration length
the vapor

e5
vR2

DV
, ~38!

where DV is the vapor thermal diffusivity, is small. Th
method is similar to that described in Ref. 27 for the case
a gas bubble.

Since we are not going to limit ourselves to sma
amplitude motion of the bubble radius, it is convenient
immobilize the bubble surface by using the new coordina

y5
r

R~ t !
. ~39!

Furthermore, we make the energy equation~7! dimensionless
by defining

t* 5vt R* 5
R

R0
T* 5

TV

T`
p* 5

p

p0
, ~40!

where the index 0 denotes undisturbed values. The va
energy equation then becomes

]T*

]t*
2F S g21

g DT* 1
y

3g

]T*

]y G p* 8

p*

5
T*

ep* R* 2

1

y2

]

]y S y2
]T*

]y D2
1

ep* R* 2 S ]T*

]y D 2

1
R* 8

R*
y

]T*

]y
, ~41!
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where the apostrophe denotes differentiation with respec
the dimensionless time. We now seek a perturbation solu
of ~41! by expandingT* in terms of the small parametere,

T* 5TS* 1eT11e2T21¯ . ~42!

Upon substituting into~41! and equating coefficients of like
powers ofe we find, at the lowest order,

1

y2

]

]y S y2
]T1

]y D5p* R* 2S TS* 8

TS*
2

g21

g

p* 8

p* D . ~43!

The solution regular at the origin and vanishing at the bub
surface is

T15
a

6
~y221!, ~44!

where, for convenience, we have defined

a5p* R* 2S TS* 8

TS*
2

g21

g

p* 8

p* D . ~45!

Upon expressingT1 in dimensional form and substitutin
into the condition~9! of energy conservation at the interfac
we find

4pR2kL

]TL

]r U
r 5R

5L
d

dt S 4

3
pR3rVD1

4

3
pR3rVcs

dTS

dt
.

~46!

The first term in the right-hand side is identical to the righ
hand side of the approximation~37!. As for the second term
it can be expected to be small whenever the time deriva
of TS is. Since the bubble surface in ordinary boiling quick
attains the saturation value, the use of~37! is thus justified in
these conditions. In the presence of forced bubble osc
tions, however, the bubble surface temperature fluctuate
the same frequency as the forcing and it will be seen sho
that the second term in~46! is far from negligible in com-
parison with the first one.

A comparison of the approximation~46! with the results
of the complete model of Sec. II in a few cases is presen
in Figs. 10 to 13. Two values ofe are quoted,e r and e0 ,
corresponding to the linear resonance radiusRr and the ini-
tial radiusR(0), respectively. Figures 10 and 11 are for
frequency of 400 Hz in saturated water at 1 atm, for press
amplitudes of 0.5 and 0.8 atm, respectively. The initial rad
is 35 mm and the corresponding value ofe, e050.021. The
value based on the~linear! resonance radius is insteade r

5902. The result at the lowerPA shows some large discrep
ancies when the bubble reaches its resonance radius, w
however, quickly diminish in the phase of slow growth.
higher drive or a higher frequency~Figs. 12 and 13, for
v/2p55 kHz, e050.26,e r538 and the same initial radius!
both result in a smaller error. The good performance of
nearly isothermal approximation even when the paramete
is not particularly small is remarkable. The zero-order a
proximation~37! is instead rather poor unless the frequen
is exceedingly small, as shown for a typical case by
dotted line in Fig. 10.

Continuing with the perturbation procedure, to first ord
in e we find an equation forT2 ,
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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]

]y S y2
]T2

]y D5y2
p* R* 2

TS*
]T1

]t*
2S g21

g
T11

y

3g

]T1

]y D
3y2

p* 8R* 2

TS*
2

T1

TS*
]

]y S y2
]T1

]y D
1

y2

TS*
S ]T1

]y D 2

2
p* R* R* 8

TS*
y3

]T1

]y
. ~47!

After substitution of~44! for T1 , this equation is readily
solved with the same boundary conditions as before, to

T25
p* R* 2

12TS*
H 1

10Fa82
a

g S g2
1

3D p* 8

p*
2

a2

3p* R* 2

22a
R* 8

R* G~y421!1
1

3 Fg21

g
a

p* 8

p*
2a8

1
a2

p* R* 2G~y221!J . ~48!

FIG. 10. Bubble growth according to the nearly isothermal approxima
~46! ~thin line! and the complete model of Sec. II~thick line! for saturated
water at 1 atm withv/2p5400 Hz andPA50.5 atm. The dotted line is the
zero-order approximation~37!. The initial value of the radius is 35mm and
Rr57.27 mm.

FIG. 11. As in the previous figure forPA50.8 atm.
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The interfacial energy conservation relation~9! now gives

kL

]TL

]r U
r 5R

5LrVS Ṙ1
R

3

ṙV

rV
D1

1

3
RrVcs

dTS

dt

2S g

g21

cs

cpV
D 2 R3p2

45kVTS
F T̈S

TS
15

Ṙ

R

ṪS

TS

1S L

csTS
1

2g

g21

L

cpVTS
23D S ṪS

TS
D 2G . ~49!

Unfortunately, this second-order result~49! is found nu-
merically to be stable only in a relatively restricted parame
range, where it does not give results significantly differe
from those of the first-order model~46!. A typical example is
shown in Fig. 14.

VII. CONCLUSIONS

We have examined the spherical dynamics of a va
bubble in an oscillating pressure field. One of our objectiv
was the examination of several predictions of linear theo

nFIG. 12. As in Fig. 10 withv/2p55 kHz andPA50.5 atm. The initial
value of the radius is 35mm andRr50.42 mm.

FIG. 13. As in Fig. 10 withv/2p55 kHz andPA50.8 atm.
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such as the existence of two resonant radii and of a dyna
cally stable limit bubble size. The smaller resonant rad
has been found to actually mark a stability limit for th
bubble, and the numerical evidence argues against the
tence of a limit bubble size. A significant obstacle in t
study has been the slowness with which the temperature
tribution develops in the host liquid compared with the o
cillations induced by the pressure field. It would seem t
recourse to experiment would be required to obtain m
definite answers.

We have also obtained a simplification of the mod
valid when the thermal penetration length in the vapor
larger than the bubble radius, Eq.~46!. The approximation
proves useful over a rather broad range of parameters
even where it is not precise, it preserves the qualitative
tures of the complete theory.

The insight gained in the course of this study sugges
broad range of possible interesting phenomena and app
tions. For example, a striking aspect of the bubble respo
of Figs. 3 and 4 is the rapidity of the growth below th
resonance radiusRr and its slowness aboveRr . This feature
may have implications for the enhancement of boiling h
transfer by acoustical means.9–13 It would seem that, by ad
justing the frequency so thatRr is close to the size at which
the bubbles detach from the heated surface, a faster gro
detachment bubble cycle can be induced with an atten
increase in heat transfer.

The continuous growth of the bubble in a saturated
uid, or even in a liquid colder than saturation, indicates
possibility of boiling heat transfer with exceeding
small—or negative—superheats.

The existence, for a given ambient pressure, of a sm
est value of the radius below which the bubble is unsta
suggests a mechanism by which shock waves in liquids c
taining vapor bubbles might be significantly amplified
causing the complete collapse of the bubbles.6,8 This process

FIG. 14. Comparison of the first- and second-order nearly isothermal
proximations @~46!, thin solid line, ~49!, dashed line# and the complete
model of Sec. II~thick solid line! for saturated water at 1 atm withPA

50.5 atm, v/2p510 kHz, and an initial radius of 30mm. Here Rr

50.17 mm.
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could have implications for the propagation of vapor exp
sions~see, e.g., Ref. 47!.
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APPENDIX: NUMERICAL METHOD

We give here a few details on the numerical metho
and procedures used for code validation.

The energy equations in the vapor and in the liquid
solved by a spectral collocation method, the application
which requires that the boundaries of the integration dom
be fixed. For this purpose, for the vapor region, we use
variabley defined in~39!, in terms of which the vapor energ
equation~7! becomes

g

g21

p

TV
H ]TV

]t
1

1

gpR2 F ~g21!kV

]TV

]y
2

1

3
yR2ṗG

3
]TV

]y
2

Ṙ

R
y

]TV

]y J 2 ṗ5
kV

R2y2

]

]y S y2
]TV

]y D . ~A1!

We then write

TV5 (
n50

M

bn~ t !T2n~y!, ~A2!

where theTn’s are the Chebyshev polynomials. Only th
even polynomials are used to ensure that]TV /]r vanish at
the bubble center. For the liquid region we use the auxili
variable

x5
l

l 1r 2R~ t !
, ~A3!

wherel is taken to be a multipleB of the thermal penetration
lengthADL /v in the liquid,

l 5BADL

v
. ~A4!

Clearly,x51 at the bubble surface whilex50 at infinity. In
terms ofx, the liquid energy equation~5! is

]TL

]t
1

x2

l
ṘF12

R2

~ l /x1R2 l !2G ]TL

]x

5
DL

~ l /x1R2 l !2

x2

l

]

]x F ~ l /x1R2 l !2
x2

l

]TL

]x G . ~A5!

The spectral approximation toTL is taken to be

TL5 (
n50

N

an~ t !T2n~x!, ~A6!

where again only even polynomials are used to ensure
]TL /]r 50 at infinity.

p-
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Upon substitution of~A2!, ~A6! into ~A1!, ~A5!, a sys-
tem of N1M21 coupled ordinary differential equations
obtained by evaluating the equations at theM1N21 collo-
cation points,

yj5cos
p j

2M
, j 51,2...,M ,

~A7!

xk5cos
pk

2N
, k51,2,...,N21.

The three missing equations necessary to determine thN
1M12 unknownsbn , n50,1,...M ,an , n50,1,...N, are the
continuity of temperature atr 5R(t) and the energy bound
ary condition~9! and the conditionTL5T` at infinity.

In the numerical implementation of the method just d
scribed, we typically takeM516,N532, andB510. Larger
values of these parameters did not significantly affect
numerical results. From the definition~A3! it is clear that the
parameterB controls the distribution of nodes in the liquid
with larger values ofB giving a denser distribution of node
near the bubble at the expense of a sparser distribution in
far field. We have found that the numerical results were
sensitive toB provided it was kept in the range between
and 50.

In earlier work on gas bubbles we have established
accuracy of the computational procedure for the bub
interior.41 For the exterior problem, in order to establish t
suitability of the mapping~A3!, to ensure that a sufficien
number of terms was retained in the expansion, and to v
date the code, we have tested the method on a simpler p
lem that admits an analytic solution. Consider the spheric
symmetric conduction equation

]T

]t
5

1

r 2

]

]r S r 2
]T

]r D , ~A8!

subject to the conditionT→0 asr→` while, at r 51,

]T~1,t !

]t
5z

]T~1,t !

]r
1 f ~ t !, ~A9!

where z and f (t) are given. This condition resembles th
boundary condition~9! or its approximations~37!, ~46! of
the present problem.

With the initial conditionT(r ,0)50, the analytic solu-
tion of the problem is

T~r ,t !5
C

r E
0

tH E exp@E~r 21!1E2t#

3erfcS r 21

2At
1EAt D 2D exp@D~r 21!1D2t#

3erfcS r 21

2At
1DAt D J f ~ t2t!dt, ~A10!

where

D25z~z24!, C5
z1D

z~42D2z!
,
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D5
1

2
~z1D!, E5

2z

z1D
.

To simulate the case of present concern we takef
5A sinvt. With this choice, recalling that

E
0

t

EeE2t erfc~EAt!eiv~ t2t!dt

5
Eeivt

E22 iv H e~E22 iv!t erfc~EAt !211
E

Aiv
erfc~Aivt !J ,

a closed-form expression forT(1,t) is readily found. Forr
Þ1, the integral~A10! was calculated numerically.

The solid line in Fig. 15 shows the analytic solutio
~A10! for v53703 s21, z54.12,A55880 att54.5/v. The
dots indicate the numerical result and, at the same time,
position of all but the last six of the collocation points us
in the calculation.
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