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The dynamics of vapor bubbles in acoustic pressure fields
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In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and
thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper
examines numerically the validity of some asymptotic-theory predictions such as the existence of
two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a
small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and
continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena
therefore play a role for a few cycles at most, and reaching a limit size—if one exists at all—is
found to require far more than several tens of thousands of cycles. It is also found that some small
bubbles may grow or collapse depending on the phase of the sound field. The model accounts in
detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an
approximate formulation valid for bubbles small with respect to the thermal penetration length in the
vapor is derived and its accuracy examined. The present findings have implications for acoustically
enhanced boiling heat transfer and other special applications such as boiling in microgravity.
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I. INTRODUCTION II. MATHEMATICAL FORMULATION

Acoustic cavitation has provided a strong incentive for  EVen with the assumption of sphericity, the complete
the study of the dynamics of gas bubbles in oscillating presPoPlem of a vapor bubble undergoing nonlinear radial pul-

sure field(see, e.g., Refs. 143but the understanding of the sat|o_ns n a _sound f|eld_|s a (_:omplex problem, as Its exact
. . . solution requires a consideration of the equations of conser-
corresponding problem for vapor bubbles is, relatively™~ . . S :
. vation of mass, momentum, and energy in the liquid and in
speaking, less developed.

. the vapor coupled by suitable interface conditions. It is, how-

In practu?e, 'osc!llat|ng vap.or.bupbles are encoumered Rver, possible to considerably simplify the problem with the
acoustic cavitation in cryogenic liquids,the propagation of aid of reasonable approximations.

pressure waves and shocks in boiling chanrieke, e.g., In the first place, the volume expansion coefficient of
Refs. 6-8, and acoustically enhanced boiling heat transfermany refrigerants at their normal boiling point is typically
(see, e.g., Refs. 9-13 small, of the order of 10°K %, e.g., 1.9 10 3K~ for

More recently, it has been proposed that acoustic radiaammonia at 239.75 K, 1.9610 3K for refrigerant 12 at
tion forces may be used to remove bubbles from heated sup43.2 K, and 0.758 10~ 3 K1 for water at 373.15 K. Thus,

faces in microgravity; thus avoiding the premature boiling with temperature oscillations of the order of a few degrees,
crisis typically encountered in such conditiofsee, e.g., thermal expansion is small and can be neglected. Second, the
Refs. 15 and 16 It is well known that the direction of these condition of conservation of mass across the liquid—vapor
forces depends on whether the bubble is driven above dnterface stipulates that
below resonance. The resonance properties of vapor bubbles . . .
therefore determine the appropriate frequency range for this m=pv(R=v)=pL(R-U), @
application. Early papers on the subjéct®reported the ap- wherem is the interfacial mass flugpositive for evapora-
parent existence of two resonant radii for a given sound fretion), py, andp, are the vapor and liquid densities,andu
guency, an intriguing aspect that has been subsequently stuthe corresponding velocities, aitithe velocity of the inter-
ied by Marston and Greerf& Marston?! Khabee?? Nagiev  face. This relation shows that the difference between the lig-
and Khabee¥? and others. uid and interface velocities i®/p, . For water, for example,
Most of the theoretical work was carried out analytically even for heat fluxes as large as 1 MW/rthe mass flux is
under the severe restriction of linear or weakly nonlinearabout 1 kg/ms, which givedu—R|~10"2m/s, that is com-
oscillations, and it is not clear how the features that itpletely negligible in comparison with typical values fof
brought to light would affect the motion of vapor bubbles the order of 1 m/s or greater. Hence, the approximation
under strong forcing. It is the purpose of the present study te-R is completely reasonable.
carry out a numerical investigation of this regime of oscilla-  These arguments show that, even in boiling conditions,
tion comparing the results with the predictions of earlier anathe liquid motion can be handled in the same way as for the
lytical theories. more familiar case of gas bubbles in a “cold” liquid. It is
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well known that, in such a case, a good model for the radialvherey is the ratio of the specific heats akg the thermal
dynamics of the bubble is furnished by the Keller conductivity. The unknown vapor temperature field can then

equatioR*~26 be found from the energy equation in the form
: : aT oT 19 aT
R\ . 3 1R). v A 27V
__ (12 |p2 Pvva(_+U_ P="2 | K" ——/, (7)
(1 c RR+2 1 3c>R ot or re<or or
. wherec,y is the vapor specific heat at constant pressure.
1 R Rd 2 The conservation of energy at the interface requires that
= 1+ —+ 5/ [Pe—P()]+0(c7?). () 9y q
- T, o
In this equation dots denote time derivativess the speed kLW r*R_ Viar r*R_ Lm, ®

of sound in the liquidP=P(t) denotes the sum of the static
ambient pressure and the time-dependent pressure field driwherelL is the latent heat. Upon expressingby means of
ing the bubble into oscillation, angk is the pressure on the (1) andv by (6), this relation gives

liquid side of the interface, related to the bubble internal

pressurep by the balance of normal stresses across the inter- k,_&—TL =LpyR E n p ) n G V& 9)
face, namely a | _g R 3yp/ cpv " ar| 5’
20 R where
Cs=Cpv— T (10)
S

in which o is the surface tension coefficient apdhe liquid
viscosity. In the present study we consider ambient pressurds the specific heat along the saturation line. For water at

of the form 100°C,cg/cpy=—1.45.
_ Due to kinetic effects, strict thermodynamic equilibrium
P(t)=p.—Pasinot, (4)  does not prevail at an interface during phase chaisge,

] ] ] e.g., Ref. 31 When the accommodation coefficient is not
where p.. is the static pressuré?, the acoustic pressure 44 gmall, these effects become appreciable only when the
amplitude, andv the sound angular frequency. . vapor Mach number approaches 1, which is far from the

‘While we include liquid compressibility effects in the qngitions that may reasonably be expected in the problem
radial equation(2) to account for energy losses by acoustic considered here. Such effects can also be important at fre-
radiation, we can neglect such effects in the liquid energyy encies high enough to be comparable with the inverse time
equation in v_|ew_0f the fact that, in any case, the Ilq_uldfOr molecular relaxation. According to Gumerdi the
temperature field is affected by the bubble only over regiongqngition for the validity of thermodynamic equilibrium is
that are much smaller than the wavelength of sound. We thus
write A7(y—DkyTw

,327Pv|—2 ’
(5) where B is the accommodation coefficient. Even fBras
small as 0.04, at 1 kHz the value of this quantity is of the

order of 10°°, which shows that thermodynamic nonequilib-
rium effects are negligible.

11
T, R?RIT. D, a( 2aTL)
— ——=—= —|r——",

_+ =
at r2 o r? or ar

whereT, is the liquid temperature R%/r?)R is the incom-
pressible velocity field at a distancdrom the bubble center, On the basis of these considerations, we take the liquid

andD, denotes the thermal diffusivity of the liquiStrictly :
: _ . . i and vapor temperature at the interface to have the same value
speaking, we should writa in place ofR in this equation, Ts, and the vapor pressure to be given by the saturation

but the difference is negligible. relation
A standard simplification in the dynamics of gas bubbles
in sound fields of moderate amplitude is to treat the bubble P=Ppsa(Ts), (12

internal pressure as spatially unifofhThis approximation,
which hinges on the smallness of the Mach number of th
vapor flow, holds also in the case of vapor bubbles, an
actually even more so in view of the fact that the acoustic  dp
pressures of interest are usually smaller than in acoustic cavi- dT,
tation. It can be shown that, from this approximation and

from the assumption of perfect-gas behavior of the vaporin view of the approximation of spatially uniform pressure,

one can derive the following expression for the vapor(12) gives the pressure everywhere in the bubble once the
27-30

with its derivative along the saturation line expressed by the
ZZIausius—Clapeyron relation

_ Lpv
Ts

(13

sat

velocity: surface temperature is known. The local value of the tem-
perature, however, varies from place to place according to
o 1 (y— 1k Ty s ®) the energy equatiof¥). The local value of the vapor density
vp Vior 3 0] is given by the perfect-gas equation of state,
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Y p 10 T T T T
PV T e Ty (14 — 100°C
Y pviv 10 | e Approximate Solution
..... 80°C
IIl. LINEAR THEORY L - 80°C Ap/atm =0.533

kHz)

In order to better appreciate the numerical results de-=
scribed in the next section it is useful to begin by a brief §
consideration of the linearized theory. Several versions ofg
this theory, with a varying degree of complexity, have al-
ready been developed in the literatiffé® and an abbrevi-
ated treatment will be sufficient.

It is postulated that the bubble can be dynamically sta-
bilized around an average radi& to be determined. For
linear oscillations, from the normal stress conditi@ it is

Natural

-2 .

10

L L
= 0

clear that this is only possible provided that 10 e e 0 10
—p. 4 2_0' (15) FIG. 1. The U-shaped lines portray the value of the frequency where the real
Po= P Re’ part of the denominator of the radius perturbation amplit(@® vanishes.
—T.=100°C, px:psa(Tx); - — T.=80°C, px:psa(Tx); - Ty

wherep,, is the static pressure arng) the mean pressure in =80°C, p.=1 atm. The upper straight dashed line is the approximation
the bubble. Under the action of the sound field, there is a nef) and the lower one the approximatigé).
transport of heat into the bubble that causes a temperature

rise and a consequent diffusive heat flux out of the bubble. A

steady regime is reached when the two fluxes balance each 3  K;+BK,

other. In this dynamically stabilized state the mean bubble b= zprRg K,2+ Kiz :

surface temperaturég, is the saturation temperature corre-

sponding top, and is higher than the undisturbed liquid 'n these equations = —(1NV)dV/dp, whereV is the bubble
temperatureT,.. Furthermore, the liquid static pressure is Volume, and can therefore be understood as(twenple

(22

also allowed to differ from saturation, and one writes bubble compressibility; explicitly,
P =Poal T +AP. (16 KEKﬁ4m:;LAGE%Z:EI§_EE)
Ypo L1 v po dp

The linearization follows the standard procedure. One

sets Dy [ Dy r( IwRe)
——— \/—=zCot
P=p.+Paexpiot), R=R.+ARexgiot), ioRe  ViwRg Dy
P=po+Apyexpiot), 17 _ 3'_'“( @) aTs (23)
_ . puLwRe D, /dp’
TS:T50+ ATSeX[XHUt), TV:T30+ ATv(r)eXF(|wt),
(18  while
whereA identifies the perturbation of the corresponding vari- k. dTq 20 Rew| | 2D
able. The surface temperature perturbatiofy is related to BZZ—LD do Ap+ R 1-3F 2D 2,
. i . pyLD_ dp e L/ JRew
Apy as dictated by the saturation condition. The temperature (24)
field in the liquid is written as )
with
Re .
— _e _ i »exd —(1+i)t
TL=Tot —(Teo=To) + AT (N)expliwb). (19 F(x):x“f F[(xit)5 A (25

A consistent linearization of the mathematical model Ieadﬁn (23) Dy, is the vapor thermal diffusivity. When the bubble
V .

then to a system of linear equations that is readily solved. Iri1S small compared with the thermal penetration depth in the

particular, gas, these expressions reduce to those of Alek¥eev.
AR 1 —i Over a broad parameter range, for a fixed sound fre-
P_A: pLR, w§+2ibw—w2' (20) quencyw, a graph ofAR vs R, shows two peaks, which

suggests the presence of two distinct resonant Rdiand
Here w, andb play the formal role of natural frequency and R, for a vapor bubblé/*8 It will be shown below that the
damping parameter for the bubble oscillations and are givesmaller one of the two radii does not actually correspond to
by a true resonance but is unstable. Alternatively, setting to zero
the real part of the denominator (#0), one finds two values
1 K,—BK; 20 . .
= 5| B —|, (22) of w for each value of the radius. A typical example of such
pRe | Ki+KT  Re results is shown in Fig. 1 for the case of water. Here the solid

2
)
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1

line is for T,=100°C Ap=0, the dashed line fofT, 10
=80°C Ap=0, and the dash-and-dot line fdr,=80°C,
Ap/p,,=0.533, which is equivalent tgp.,=1atm. The
curves have two branches, the upper one of which corre-
sponds tR, and the lower one t&,. The two branches join
at a value of the radius below which no resonance exists.
At first sight it might appear surprising that a bubble |
containing only vapor exhibits any stiffness at all, let alone g
two distinct resonances. The key to these phenomena is to bg 10 |
found in the temperature dependence of the saturation presg
sure. More specifically, consider a vapor bubble the radius

0

10° ¢

plitude P,/atm
8

R, of which decreases by an amoutiR. This tends to cause 10
the condensation of an amount of vapor
Amy=4mR5pyAR. (26) 10° 107 10 10° 10 10°

Equilibrium Radius R,(mm)

If the process occurs with a frequenay the latent heat 6. 2. Relation b o ived itude and th _
: H H 1G. 2. Re ation between the normalized pressure amplitude and the maxi-
LAmy liberated by the condensation increases the tempergmum radiusR, according to the quasilinear theory of Ref. 34, E3p), at

ture of a shell of liquid of thickness yD| /@ by an amount e different frequencies. The dots mark the resonant radii of Fig. 1. The
dashed portions of the lines are unstable, the solid ones stable. The liquid is

/D turated water at 1 atm.
47TR5 ?LPLCLATS:LAmV, (27) saturated water al atm
with ¢ the liquid specific heat. This heating of the bubble »y 3YP
surface increases the saturation pressure by an amquipt woRy= oL (32

=(dp/dT,)ATs, where the derivative is taken along the _ _ _ _
saturation line. A force tending to resist compression is genThis expression—and in particular its dependence on the

erated in this way, bubble size—is very different fron81).
) The second, lower resonance may be understood as fol-
F=4mR;Apy=—KAR, (28 lows. At low frequency, inertia and damping are small and

., can be ignored. The main effects are the restoring force pre-

where the following expression for a “stiffness parameter viously described and the surface tension force

K follows from the previous argument:

20
w Lpy d w (Lpy)? 477R2A(—)E—ICUAR. (33
K—amRi Py APy e @ (LY7o | R
Dy cLp dTs DcipoTs

These two forces tend to oppose each other and, in suitable
The Clausius—Clapeyron relatighi3) has been used in the conditions, can balance. This circumstance leads to an oscil-
second step. The added mass for a sphere in radial motion ligting system forced by the sound field, but with a negligibly
given by M=4mR3p_, and thereforg29) enables one to  small restoring force. The oscillation amplitude is then large,
estimate the resonance frequeney of the vapor bubble by which superficially looks like a second resonance. Proceed-

w5=KIM or ing as before, equatin@®8) and(33), and again adjusting a
) numerical constant, we find
Wi\ EP (30) 200p.T. |2
o Vp. 2" oC o
D ReC T..p? woR=@,D, [ P =) (34)
(Lpv)

If w# wq, this relation gives the position of the pole of the

response function chR(t) when the bubble is driven at the ITS r(gsmiltoisgjhown' byhthe Ipwe; gt:aight gotted line in F?gr;
frequencyw. By settingw= wq, on the other hand, we find or ©,=0.94, agan t ere IS a fairly goo agreement wit
the natural frequency of the bubble as the exact one. This physical argument also shows, however,

the true nature of this second “pseudoresonance.” Indeed, if

L*pY the bubble radius is smaller than this “resonant” value, the
(3D surface tension effect is so large as to give rise to a negative

stiffness and the bubble will collapse unstably. Conversely, it
wherek, is the liquid thermal conductivity and a numerical will grow for a bigger value of the radius.
constant®, has been introduced to account for the approxi-  So far the equilibrium radiu®, is an arbitrary param-
mate nature of the derivation. With the val@g =0.56, the eter, given which the preceding formulas determine reso-
previous argument gives the upper dotted straight line in Fignance frequency, pressure amplitude, etc. As shown by
2, which is seen to be in close agreement with the exachlekseev?* the linear theory can be extended to a weakly
result. For comparison, it may be recalled that the naturahonlinear one capable of determining a valueRyf for a
frequency of a gas bubble in adiabatic oscillation at a presgiven acoustic pressure amplitud®, . The result of this
surep,,, with the neglect of surface tension, is given by  analysis is(see also Refs. 35,36

pre Tok. '
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2 2 2.0
EK B CR:(dTg/dp) d<T./dp _i W?RZK|?| P2
3" 2L\2D /e 4dTydp 367 e A l
16
=1 1K 20+ 2R? 2A +20 35
- 3 Re pLw e p Re . ( )

A graph of this curve, again for the case of water at 100 °C ,
with Ap=0, is shown in Fig. 2 for several acoustic frequen- §
cies. For each frequency, the two resonant values of the ra os -
dius of Fig. 1 are marked by dots. Equati(8b) has been
improved by Gumero¥® whose results, however, are very
close for the cases considered h¢he.Fig. 2 the slight shift 04T
of R, from the local minimum is due to the fact that the peak
of AR given by(20) does not exactly coincide with the van- ‘ ‘ ‘ ‘
ishing of the real part of the denominator, which is the con- 00 10.0 200 won 30.0 40.0 50.0
dition used to calculat®,.] The portion of the curve to the
left of the larger resonance radil® is dashed and corre- FIG. 3. Bubble radius(normalized by the linear resonant radit
sponds to a condition of unstable equilibrium, while the por_:2.71 mm) versus time for saturated water at 1 atm. The sound amplitude is
tion to the right is predicted to be stable. Notice that the# aim and the frequency 1 kHz.
derivation of the resul(35) requires the assumption that the
temperature field in the neighborhood of the bubble has st
bilized to steady periodic conditions.

In summary, the key predictions of the linear theory that

a[:3roaches the resonant vallg, the oscillation amplitude

increases substantially and the growth rate of the bubble cor-
. i . ) : respondingly accelerates. Above this phase of rapid growth,
will be examined numerically in the light of the fully non- the growth rate changes markedly to a very low value that

lrlggiirs,r?bcﬁﬁleogxiss?;élea;:(:i) éir:/(aer?);rsetiglcj?eOa:cn?plri(tejggag; keeps decreasing. Qualitatively similar results for liquid ni-
smallest value of the radius below which the bubble cannoix)gen and hydrogen have been published by AkulicHev.

be dynamically stabilizedic) the existence, at a given pr e have found the same behavior in all the cases we have
e dy icatly s e ce, atag pres investigated, some further examples of which are shown in
sure amplitude, of a largest value of the radius that function

o - . ?—ig. 4 for the same conditions as Fig. 3 but with different

as an attractor for bubbles with different initial radii. values ofP . In some cases we have continued the integra-
tion for several tens of thousands of cycles, always finding a

IV. NUMERICAL RESULTS decreasing growth rate that, although small, is definitely not
zero. These results are at variance with the linear theory

.A ”‘,Jme”ca' solution of the. system of equations de'prediction of the existence of a limiting value for the radius.
scrlbeq n Sec. Il has been obtamgd by means of a SpeCt,rﬁlurther comments on this matter will be found in the next
approximation to the temperature fields in the vapor and iNaction.

the liquid. We have found that the numerical treatment of the Figure 5 shows the mass flux at the bubble interface

problem is quite delicate and the results are sensitive even I(?)ositive for evaporationfor the highest-amplitude case
comparatively small errors. Details of the method and of the(PA=0.8atm) of Fig. 4. The very large values of these

validation of the code are provided in the Appendix. All the g~ o 4re worthy of note. Even during the later period of
results shown here are for water.

Figure 3 shows the behavior of the bubble radius, nor-
malized by the linear resonance radils=2.71 mm, as a
function of time forw/27w=1 kHz, P,=0.4 atm. The liquid
is water atT.,=100°C andp..=1 atm, so that\p=0. The 20 | 0.8 atm i
initial value of the radius is 3®m, which is slightly larger
than the linear pseudoresonant radRjsthat equals 2Jum
in this case. It is seen that the bubble starts growing imme-
diately due to the phenomenon of rectified heat tran%éerd ,
develops a distinct nonlinear response first with a weak thirds 2|
harmonic and then a prominent second harmonic during the
first few cycles. The resonant radii at three and two times the os |
driving frequency are 0.913 and 1.26 mm, which correspond 0.2 atm

to normalized values of 0.34 and 0.46. These harmonic com- , [‘5

0.6 atm

ponents therefore develop as a nonlinear effect much as il 0.1 atm
the case of gas bubblé&3 Most likely a similar nonlinear oo I . : . .
behavior is responsible for the subharmonic emissions ob- o0 10.0 200 300 40.0 50.0

served by Neppiras and Finéhin their study of acoustic ovee

cavitation in cryogenic liquids. When the mean radius ap- FIG. 4. As in Fig. 3 for different acoustic pressure amplituétgs
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FIG. 5. Mass flux at the bubble wdlpositive for evaporationfor the case

i ; FIG. 6. Bubble behavior near the unstable region of Fig. 2 for saturated
in Fig. 4 with P,=0.8 atm.

water at 1 atm and different acoustic pressure amplitudes. The initial bubble
radius is 35um and the acoustic frequency 1 kHz.

slow growth and relatively small-amplitude oscillation, the
mass flux is about 0.7 kg/s, which is equivalent to a heat Predicted, although it is found that the outcome of the pro-
flux of 1.5 MW/t cess is also sensitive to the phase of the pressure field at the

If the integration is started from a radius near limit value Start of the calculation. If the initial phase is one of compres-
of linear theory, the bubble is found to first shrink and thension (which can be simulated by using a negative value for
slowly turn around and start growing. This behavior can bePa), rather than expansion, we find collapse even|fy|
explained by the fact that the evolution of the temperature>0.1, as shown in Fig. 7.
field in the neighborhood of the bubble takes a large number If the liquid is superheated, so thAp<0, the bubble
of cycles but, once a quasisteady temperature distribution ha¥ll grow spontaneously provided the effect of surface ten-
been attained, growth sets in. The nonoscillatory componerftion is sufficiently weak. An interesting consequence of rec-
of the temperature fielftf. the second term in the right-hand tified heat transfer is the possibility to accelerate this growth.
side of(19)] is significant over a distance of ord@from the ~ An example is shown in Fig. 8 wherep=—0.1atm, which
bubble, and the time required for a temperature perturbatioforresponds to a water superheat of 2.3 K; the acoustic pres-
to reach this distance is of the order Rf/D, . The total sure amplitudes are 0, 0.2, and 0.4 atm. It is evident that
number Of Cyc'es needed is therefore of the order oﬁhere iS a Striking effeCt on the bubble grOWth rate, Wh|Ch
wR%/27D, . For w/27w~1 kHz, R~1 mm, this is of the or- might be useful to enhance boiling heat transfer in certain
der of 10 OOO' which is in agreement with the numerical evi_situations. The effect iS, hOWeVer, much less dramatic as the
dence. This extremely long development time of the temliquid superheat is increased, as Fig. 9 shows A
perature distribution in the neighborhood of the bubble is &= —0.2 atm, which corresponds to a superheat of 4.8 K. The
significant difficulty in the computational study of these phe-0scillating lines are foP,=0.2 and 0.5 atm.
nomena not only in terms of computer resources but, more
significantly, of accuracy requirements.

In view of the slow development of the temperature
field, it is also difficult to study the bubble behavior in the
neighborhood of the unstable val& predicted by the lin- T
ear theory and shown by the lower branch of the lines in Fig. *® [ i
1. Ideally, it would be necessary to start the calculation with N PN
an already fully developed temperature field, which is clearly / \ 2
not feasible. Some typical results obtained with the initial £o4 | . \ /
condition T =T, are shown in Fig. 6 for the same condi- = / VoS
tions as in Figs. 3 and 4. The frequency is 1 kHz and the b -0 atm
initial radius 35um which, according to the result shown in 0zl A Pe0gam
Fig. 2, would require an acoustic pressure in excess of 0.03! ‘
atm for bubble growth. The numerical results show instead .
that, for values ofP, smaller than 0.1 atm, the radius tends \M
to zero, implying a complete collapse of the bubble. The 00 - —— — =1 o o5 0
difference between this value and the linear theory prediction otf2n
?S ”kEIy_du,e to the different initial temperature distributions FIG. 7. Effect of the sound phase on the behavior of a bubble near the
in the liquid. ForP,=0.1atm, however, the bubble starts ynstaple region of Fig. 2 foR(0)=185um:; other conditions as in the
growing immediately. Qualitatively the result is therefore asprevious figure. Solid lineP,=—0.8 atm; dashed lin®,=0.8 atm.

0.8
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20 - ' ' ' ' up to a certain order of accuracy in the acoustic pressure
amplitude, the average growth rate of the bubble equals a
Py=0.4 atm certain expression. By equating this expression to zero, he

151k | predicts a limiting value of the radius in qualitative agree-

ment with the linear theory result. From his analysis, how-
ever, it is not possible to determine what would be the effect
of keeping more and more terms in the expansion. It could
be that the limiting value of the radius would increase at each
Py=0.2atm order of the perturbation calculation, which would essen-
tially confirm our results.
051 i In the conventional linear theory it is assumed that the
P,=0atm liquid temperature near the bubble has reached a quasisteady
distribution. This assumption is strictly correct only at
: s : : : threshold conditions, where the net heat flux into the bubble
0.0 5.0 10.0 15.0 20.0 25.0 30.0 . . .
ot/on vanishes. In reality, as the average bubble radius grows or
FIG. 8. Effect of a sound field on bubble growth in water at 1 atm with a 2.3shrlnk_s, there is a SIOWIy gvolvmg average tempergturg field
K superheat at 1 kHz. The three lines are, in ascending ordePfei0, 0.2, superimposed on the oscillatory temperature distribution. It
and 0.4 atm. The initial bubble radius is 1@én andR,=2.71 mm. could be that failure to account for this feature is responsible
for the result of a limiting value of the radius in the linear
theory. This effect is includethpproximately in Gumerov's
It is well known that gas bubbles driven by a sufficiently analysis but it does not change the final prediction.
large acoustic pressure exhibit chaotic behafidf. we We have validated our calculations by repeating them
have not encountered any trace of such behavior for the Vanany times with different values of the numerical param-
por bubbles studied in this paper. Only if the interfacial €n-gters such as the number of terms retained in the spectral
ergy balance relatiof8) is approximated by37), derived in  gynansion, error tolerance, etc., always with the same results.
the Sec. VI, does one encounter a chaotic response. It aQye are thus confident that this prediction is not a numerical
pears probable therefore that, vv_|th the full model, Chaosdrtifact, at least up to several hundred cycles. Gunféiuas
could be found at a stronger forcing, although the assumppgependently confirmed our calculations by a different nu-
tion Of sphericity would most likely be inapplicable in these nqrical method. He estimates that the problem might lie in
conditions. the fact that reaching the limiting radius might require sev-
eral hundred thousand or even millions of cycig# so, a
V. LIMITING RADIUS fully numerical investigation of the matter would place ex-
As mentioned in the previous section, our results ardréme demands on both computing resources and numerical

incompatible with the linear-theory prediction of a limiting @ccuracy and is clearly not feasible with our techniques.
value of the radius. Very recently, Gumeféwas consider- Unfortunately, one cannot turn to experiment to resolve
ably extended the analytical theory by using a multiple—time-the question. The scant available experimental evidence is
scale approach coupled with a singular-perturbation treagmbiguous and the accuracy with which experimental

ment of the temperature field near the bubble. He finds thafarameters—in particular the sound pressure amplitude at
the location of the bubble—are known not very gdodthis

connection see comments in Ref.)4Marston*® studied

0 ' ' ' ‘ ' vapor bubbles in Hell at 2.09 K and found a continuous
growth until the bubbles became unstable and broke up. In a
later experiment with He |l at 4.2 K, Marston and Gre€ne
observed circular arcs of seemingly stable vapor bubbles. We
have tried to reproduce these results but have encountered
the fundamental difficulty that the predicted surface tempera-
ture of a Hel bubble exceeds the critical point during the
compression phase of the oscillations. In view of its very
large thermal conductivity, a bubble in He Il has essentially

0.0

6.0 -

5.0

4.0

RR,,

3.0

—— P,=0atm

50 | o gﬁ: 32 ::: | no stiffness. In both cases, therefore, the physical situation is
quite different from that of ordinary liquids studied in this
10 H paper.
For a liquid like water in ordinary conditions at frequen-
0.0 : : : ‘ : cies in the kHz range, the practical consequences of this
0.0 5.0 10.0 15.0 20.0 25.0 30.0

oti2n unresolved point are minor as the predicted limit radius is
nrealistically lar ns of centim nd therefor -
FIG. 9. As in Fig. 8 for a superheat of 4.8 K at 10 kHz. The initial radius is unrealistically la gdte s of cent ete)sa d therefore out

10 um and the resonant radius 0.17 mm. The pressure amplitudes are 0, 0.§izde the range 9f practical intereSt-_ FOIj other liquids, or at
and 0.5 atm. higher frequencies, however, the situation would be differ-
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ent. Experiments directly addressing this matter would be ofvhere the apostrophe denotes differentiation with respect to
great interest. the dimensionless time. We now seek a perturbation solution
of (41) by expandingT™* in terms of the small parameter

*=TE+ €T +€2To+ . (42)

VI. NEARLY ISOTHERMAL CASE e . - .
Upon substituting intd41) and equating coefficients of like

The model of Sec. Il is somewhat complex and it ispowers ofe we find, at the lowest order,

d_esirable to develop. accqrate simplificati_ons_of it. We con- P T, T y—1p*’
sider here the case in which the bubble interior can be con- — —(yZ—) =p* R*Z(—*— — — ) (43
sidered nearly isothermal. The most straightforward applica- y©ay ay Ts Yy P
tion of this idea can be based on the identity The solution regular at the origin and vanishing at the bubble
_ d R surface is
477R2pV(R—U):a(47TJ erVdr), (36) o
° Ti=5(y*-1), (44)

which is easily proven with the aid of the continuity equa- _ )
tion. If it is assumed that the phase change at the bubblhere, for convenience, we have defined

surface is dominated by the liquid-side heat transfer, and that TS -1 p*’
the bubble density is spatially uniform, the interfacial energy o =p* R*Z(i*— — ) ) (45)
condition (8) then gives Ts v p

JT d/a Upon expressingl; in dimensional form and substituting

47R%k, -t =L —|=7R%y (37 into the condition(9) of energy conservation at the interface,
ar | dt\3 ' ;
r=R we find
an approximation that has been extensively used in the boil- aT, d/4 dTs
ol A7R*k —| =L—|z7R%py|+ 7R3 pyC——.
ing literature(see, e.g., Ref. 46, Chs. 6 angd 7 L ar dil\3 Pv|T3 PVEsTqt
r=R

In order to examine the validity of this expression and

: S (46)
possibly extend it, it is useful to proceed formally on the . _ _ S _
assumption that the square of the ratio between the chara¢he first term in the right-hand side is identical to the right-

teristic bubble radius and the thermal penetration length ift@nd side of the approximatid87). As for the second term,
the vapor it can be expected to be small whenever the time derivative

of Tgis. Since the bubble surface in ordinary boiling quickly

wR? attains the saturation value, the us€2¥) is thus justified in
Dy’ (38 these conditions. In the presence of forced bubble oscilla-

) S tions, however, the bubble surface temperature fluctuates at
where Dy is the vapor thermal diffusivity, is small. The o same frequency as the forcing and it will be seen shortly
method is similar to that described in Ref. 27 for the case O{hat the second term if46) is far from negligible in com-
a gas bubble. _ o parison with the first one.

Since we are not going to limit ourselves to small- A comparison of the approximatic@6) with the results
amplitude motion of the bubble radius, it is convenient tof the complete model of Sec. Il in a few cases is presented
immobilize the bubble surface by using the new coordinate;, Figs. 10 to 13. Two values of are quotede, and e,

corresponding to the linear resonance rad®Jsand the ini-

€=

r

y= % (39)  tial radiusR(0), respectively. Figures 10 and 11 are for a
frequency of 400 Hz in saturated water at 1 atm, for pressure
Furthermore, we make the energy equatipndimensionless amplitudes of 0.5 and 0.8 atm, respectively. The initial radius
by defining is 35 um and the corresponding value afe;=0.021. The
value based on théinean resonance radius is instead
t*—wt RF=— T*= E p* = 1 (40) =902. The result at the lowd?, shows some large discrep-
Ro Te Po’ ancies when the bubble reaches its resonance radius, which,

however, quickly diminish in the phase of slow growth. A
) %gher drive or a higher frequencfFigs. 12 and 13, for
energy equation then becomes wl27m=5KkHz, €;=0.26, ¢,= 38 and the same initial radius
oT* y=1\_, y aT*]p*’ both re.sult in a smaller error. The good performance of the
ot (T)T + @ W p_* nearly isothermal approximation even when the parameter
is not particularly small is remarkable. The zero-order ap-
™ 19 ,dT* 1 aT*\ 2 proximation(37) is instead rather poor unless the frequency
_WF@(V ay )_W(W) is exceedingly small, as shown for a typical case by the
dotted line in Fig. 10.
" K E (41) Continuing with the perturbation procedure, to first order
R Y ay ' in € we find an equation fof ,,
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2.4 E 24 E
20} P 1 20 | Ly R A AARARARAR ARARRT
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1.6 1.6 0 RRRRRE vyvuu
13 2
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1.2 q 1.2 q
& & Isothermal First—order
i —— Complete Model
o8 AU Isothermal Zero-order | 08 - .
— Isothermal First-order
! Complete Model
0.4 | P 1 0.4 1
0.0 . . . . . 0.0 1 1 1 . 1
0.0 5.0 10.0 15.0 20.0 25.0 30.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0
ot/2n ot/2r

FIG. 10. Bubble growth according to the nearly isothermal approximationFIG. 12. As in Fig. 10 withw/27=5 kHz andP,=0.5 atm. The initial
(46) (thin line) and the complete model of Sec.(thick line) for saturated  value of the radius is 3mm andR,=0.42 mm.

water at 1 atm withw/27=400 Hz andP,=0.5 atm. The dotted line is the

zero-order approximatio(87). The initial value of the radius is 3am and

Ry=17.27 mm. The interfacial energy conservation relati(#) now gives
an B . Rpy| 1 dTg
9 L0Ta ,PYR¥Z 9Ty (y=1_ y 9Ty ke— rzR—va R+§E +3Roves
ay\”? ay TE  at* y 173y ay
2 3h2 | T o
c R T RT
> 2p*,R*2 T ( 2‘9T1) _( 7’1 c_s) 45ka T_S+ ﬁT_S
— % T % o — Y- v vislls S
y T T ay\? oy P ,
L 2y L
2 2 * R* R* / S
ye [Ty P*RTR*" 9Ty +( + 3) (—) . (49
+ ﬁ(W) - T W (47 cTs 7y—1 CpVTS Ts

Unfortunately, this second-order res(#9) is found nu-
ically to be stable only in a relatively restricted parameter

After substitution of(44) for T,, this equation is readily mer
nﬁjange, where it does not give results significantly different

solved with the same boundary conditions as before, to fi

T p*R*?( 1 .« 1\ p*’ a? from those of the first-order mod&t6). A typical example is
=X Ty == o
2 12T% |10 y Y73 p* —23p*R* shown in Fig. 14.
* !/ 1 _ l * !
Y p
200 }(y4_1)+§ e o VIIl. CONCLUSIONS
We have examined the spherical dynamics of a vapor
N a? 2_4q (48 bubble in an oscillating pressure field. One of our objectives
p*R*? (y ) ) was the examination of several predictions of linear theory,
aal — o . . . . . ]
| A
20 | ) 1 24 N AR ARAARD \ARARARTS
, ‘ MAAAARAAAAAAAA ‘
1 1 + | i
16 - ! « | 2.0 Y'v,yllle
o ;/ /\\ i v i Py \ ’IE 16 - ' ' | )
42 ! g
1 = 12 —— Isothermal First-order
“ Isothermal First-order “ ——— Complete Model 1
0.8 - Complete Model 1
08 1
04 ] 0.4 .
0.0 ‘ ‘ ‘ ‘ ‘ 0.0 . . . . .
0.0 5.0 10.0 15.0 20.0 25.0 30.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0
wt2n ot/2r
FIG. 11. As in the previous figure fd?,=0.8 atm. FIG. 13. As in Fig. 10 withw/27r=5 kHz andP,=0.8 atm.
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could have implications for the propagation of vapor explo-
sions(see, e.g., Ref. 47
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04 | i APPENDIX: NUMERICAL METHOD

20 1.0 20 30 20 5.0 We give here a few details on the numerical methods

tize and procedures used for code validation.

FIG. 14. Comparison of the first- and second-order nearly isothermal ap- The energy equations in the vapor and in the liquid are
proximations[(46), thin solid line, (49), dashed ling and the complete  solved by a spectral collocation method, the application of
model of Sec. li(thick solid ling for saturated water at 1 atm WitRa  \hich requires that the boundaries of the integration domain
—0.5atm, w/2r=10kHz, and an initial radius of 3qum. Here R, o fyad For this purpose, for the vapor region, we use the

0.L7mm. variabley defined in(39), in terms of which the vapor energy
equation(7) becomes
. y .Y P |dTy 1 Ty 1 .

such as the existence of two resonant radii and of a dynamtj T WJr = (y— 1)kv(9—— §yR p
cally stable limit bubble size. The smaller resonant radius’ v P y
has been found to actually mark a stability limit for the JTy R aTy]  ky @ aTy
bubble, and the numerical evidence argues against the exis- XW_ ﬁyW —p= Rz—yZW(yzW . (A1)
tence of a limit bubble size. A significant obstacle in the
study has been the slowness with which the temperature di¥ve then write
tribution develops in the host liquid compared with the os- M
cillations induced by the pressure field. It would seem that  T,=> p_(t)T,,(y), (A2)
recourse to experiment would be required to obtain more n=0
definite answers. where theT,’s are the Chebyshev polynomials. Only the

We have also obtained a simplification of the modelgyep polynomials are used to ensure thay/Jr vanish at

valid when the thermal penetration length in the vapor isie pubble center. For the liquid region we use the auxiliary
larger than the bubble radius, E@6). The approximation \4riable

proves useful over a rather broad range of parameters and,
even where it is not precise, it preserves the qualitative fea- _ |
tures of the complete theory. [+r—R(t)’

The insight gaine_d in_the course of this study SUGQeSIS ferel s taken to be a multipl8 of the thermal penetration
broad range of possible interesting phenomena and apphcrfgngth\/D—/w in the liquid
L )

tions. For example, a striking aspect of the bubble response
of Figs. 3 and 4 is the rapidity of the growth below the /D,
resonance radiug, and its slowness abowR, . This feature B o
may have implications for the enhancement of boiling heat ) o
transfer by acoustical meafigl® It would seem that, by ad- Clearly,x=1 at the bubble surface while=0 at infinity. In
justing the frequency so th&, is close to the size at which €MS 0fx, the liquid energy equatio(d) is

(A3)

(Ad)

the bubbles detach from the heated surface, a faster growthfr,  x2. R2 aT,.
detachment bubble cycle can be induced with an attendan;~+ I_R 1- (ITx+R=1)2| ox
increase in heat transfer.
The continuous growth of the bubble in a saturated lig- D, X2 9 2x2 aT,
uid, or even in a liquid colder than saturation, indicates the ~ ~ (I/x+R—1)2 | ox (I7x+R=1) T ox | (AS)
possibility of boiling heat transfer with exceedingly o .
small—or negative—superheats. The spectral approximation B, is taken to be
The existence, for a given ambient pressure, of a small- N
est value of the radius below which the bubble is unstable T":nEo an(t) Ton(x), (AB)

suggests a mechanism by which shock waves in liquids con-
taining vapor bubbles might be significantly amplified by where again only even polynomials are used to ensure that
causing the complete collapse of the bubBI&ghis process JT, /dr=0 at infinity.
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Upon substitution ofA2), (A6) into (Al), (A5), a sys- 300 ' —
tem of N+ M —1 coupled ordinary differential equations is
obtained by evaluating the equations at Me-N— 1 collo- Bor

cation points,

] . «  Collocation Point
yj=cosm, j=12..M, 150 [ —  Analytical Solution ]
(A7) =
K 10.0 ]
x,;cosm, k=1,2,.N—1.
50 F
The three missing equations necessary to determinéNthe
+M +2 unknownsb,,, n=0,1,..M,a,, n=0,1,..N, are the 0o |
continuity of temperature at=R(t) and the energy bound-
ary condition(9) and the conditiorT =T, at infinity. 50 0T 01 02 03 o4 05 o8 07 08 o5 19 14
In the numerical implementation of the method just de- r-1

scribed, we typically také/ =16, N=32, andB=10. Larger FIG. 15. The solid line shows the analytical solution of the model problem
values of these parameters did not significantly affect thejescribed in the Appendix. The dots mark the numerical solution and also
numerical results. From the definitigA3) it is clear that the  the position of all but the last six collocation points.
parameteB controls the distribution of nodes in the liquid,
with larger values oB giving a denser distribution of nodes
near the bubble at the ex 1 2{
pense of a sparser distribution in the _ —(§+A) E=

far field. We have found that the numerical results were in- {+AT
sensitive toB provided it was kept in the range between 10 1 simulate the case of present concern we téke
and 50. =Asinwt. With this choice, recalling that

In earlier work on gas bubbles we have established the
accuracy of the computational procedure for the bubblef EeE2 erf E/m)ei@t-7d
interior** For the exterior problem, in order to establish the oEVT) 4
suitability of the mappingA3), to ensure that a sufficient
number of terms was retained in the expansion, and to vali- _ E€*' (E%-i6)t gyt E ) — 1+ E o ot
date the code, we have tested the method on a simpler prob- ~ E2—jw € erf \/mer o )

lem that admits an analytic solution. Consider the spherically
symmetric conduction equation a closed-form expression fdr(1t) is readily found. For

#1, the integralA10) was calculated numerically.

ar 1 o9 ,dT The solid line in Fig. 15 shows the analytic solution
i U (A8) (A10) for ©=3703s?, (=4.12,A=5880 att=4.5/w. The
. - ) dots indicate the numerical result and, at the same time, the
subject to the conditio —0 asr— while, atr=1, position of all but the last six of the collocation points used
IT(L1) aT(11) in the calculation.
+1(1), (A9)
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