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Thermal Convection for Large Prandtl Numbers
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The Rayleigh-Bénard theory by Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)] is extended
towards very large Prandtl numbers Pr. The Nusselt number Nu is found here to be independent of Pr.
However, for fixed Rayleigh numbers Ra a maximum in the Nu(Pr) dependence is predicted. We more-
over offer the full functional dependences of Nu(Ra,Pr) and Re(Ra,Pr) within this extended theory, rather
than only give the limiting power laws as done in J. Fluid. Mech. 407, 27 (2000). This enables us to
more realistically describe the transitions between the various scaling regimes.

DOI: 10.1103/PhysRevLett.86.3316 PACS numbers: 47.27.–i, 47.27.Te

In thermal convection, the control parameters are the
Rayleigh number Ra and the Prandtl number Pr. The
system responds with the Nusselt number Nu (the dimen-
sionless heat flux) and the Reynolds number Re (the di-
mensionless large scale velocity U). The key question is
to understand the dependences Nu(Ra,Pr) and Re(Ra,Pr).
In experiments, traditionally the Prandtl number was more
or less kept fixed [1–3]. However, the recent experiments
in the vicinity of the critical point of helium gas [4,5]
and of SF6 [6] or with various alcohols [7,8] allow one
to vary both Ra and Pr and thus to explore a larger do-
main of the Ra-Pr parameter space of Rayleigh-Bénard
(RB) convection, in particular that for Pr ¿ 1. The ex-
periments of Ahlers and co-workers [7,8] suggest that for
2 # Pr # 34 the Nusselt number only weakly decreases
with increasing Pr and perhaps even saturates [9]. The
same (at fixed Ra � 6 3 105) is found in the numerical
simulations [10,11].

The large Pr regime of the latest experiments has not
been covered by the recent theory on thermal convection
by Grossmann and Lohse (GL, [12]), which otherwise well
describes various measurements. In particular, it explains
the low Pr measurements of Cioni et al. [3] (Pr � 0.025),
the low Pr numerics which reveal Nu � Pr0.14 for fixed Ra
[10,11], and the above mentioned experiments by Niemela
et al. [5] and Xu et al. [7].

One main result of the present work is that Nu is found to
be independent of Pr in the large Pr regime. We in addition
present the complete functional dependences Nu(Ra,Pr)
and Re(Ra,Pr) within the GL approach, rather than only
giving the limiting power laws and superpositions of those
as was done in [12]. This enables us to more realisti-
cally model the transitions between the scaling regimes
of [12].

Approach.—To make this paper self-contained we very
briefly recapitulate the key idea of the GL theory, which
is to decompose the energy dissipation rate eu and the
thermal dissipation rate eu into their boundary layer (BL)
and bulk contributions,

eu � eu,BL 1 eu,bulk, (1)

eu � eu,BL 1 eu,bulk . (2)

For the left-hand sides the exact relations eu �

n3

L4 �Nu 2

1� Ra Pr22 and eu � k
D2

L2 Nu are used, where n is the kine-
matic viscosity, k the thermal diffusivity, L the height of
the cell, and D the temperature differences between bot-
tom and top plates. The local dissipation rates in the BL
and in the bulk [right-hand sides of Eqs. (1) and (2)] are
modeled as the corresponding energy input rates, i.e., in
terms of U, D, L, and the widths lu and lu of the ki-
netic and thermal boundary layers, respectively. For the
thickness of the thermal BL we assume lu � L��2 Nu�
and for that of the kinetic one lu � L��4

p
Re � as it holds

in Blasius type layers [13]; as for the prefactor 1�4 cf. [12],
Sec. 3.4. For very large Ra the laminar BL will become
turbulent and lu will show a stronger Re dependence. Note
that whereas the thermal BLs build up only at the top and
bottom wall, the kinetic BL occurs at all walls of the cell
and therefore the contribution of eu,BL to eu is larger than a
simple minded argument would suggest. The two Eqs. (1)
and (2) then allow one to calculate the two dependent vari-
ables Nu and Re as functions of the two independent ones
Ra and Pr.

Input rate modeling.—The modeling of the dissipation
rates on the rhs of Eqs. (1) and (2) is guided by the Bous-
sinesq equations. Depending on whether the BL or the bulk
contributions are dominant, one gets different expressions
on the rhs of Eqs. (1) and (2) and thus different relations
for Nu, Re vs Ra, Pr, defining different main regimes; see
Ref. [12] and Fig. 1.

The rhs thermal dissipation rates depend on whether
the kinetic BL of thickness lu is within the thermal BL
of thickness lu (lu , lu , small Pr) or vice versa (lu .

lu , large Pr). The line lu � lu , corresponding to Nu �

2
p

Re, splits the phase diagram into a lower (small Pr) and
an upper (large Pr) part, which we label by “l” and “u”.

We first consider lu , lu (i.e., small Pr, regime “l”).
Then (see [12])
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FIG. 1. Phase diagram in the Ra-Pr plane: The upper solid
line means Re � Rec �� 0.28�, the lower nearly parallel solid
line eu,BL � eu,bulk, the curved solid line is eu,BL � eu,bulk, and
the long-dashed line is the line lu � lu . The thin dotted line
denotes where the laminar kinetic BL becomes turbulent. As
extensively discussed in Ref. [12], the exact onset of this insta-
bility strongly depends on the prefactors used when calculating
this type of phase diagram. Data points where Nu has been
measured or numerically calculated have been included; squares:
Chavanne et al. [4]; diamonds: Cioni et al. [3]; circles: Niemela
et al. [5]; stars: Xu et al. [7,8]; triangles: Verzicco and Camussi
(numerical simulations) [10].

eu,bulk �
U3

L
�

n3

L4
Re3, (3)

eu,BL � n
U2

l2
u

lu

L
�

n3

L4
Re5�2

, (4)

eu,bulk �
UD2

L
� k

D2

L2
Pr Re , (5)

eu,BL � k
D2

L2
�Re Pr�1�2. (6)

The last expression is concluded [2,12] from the heat
transfer equation ux≠xu 1 uz≠zu � k≠2

zu, which implies

U�L � k�l
2
u giving Re1�2 Pr1�2 � Nu.

If now larger Pr are considered, the kinetic boundary
will eventually exceed the thermal one, lu . lu , upper
range “u”. The relevant velocity at the edge between
the thermal BL and the thermal bulk now is less than U,
namely about Ulu�lu. To describe the transition from
lu being smaller to being larger than lu we introduce
the function f�x� � �1 1 xn�21�n of the variable xu �

lu�lu � Nu�2
p

Re, f being 1 in the lower range “l”
(small Pr) and 1�xu in “u” (large Pr), respectively. The
relevant velocity then is Uf�xu�. We take n � 4 to char-
acterize the sharpness of the transition.

This generalizes (5),(6) to

eu,bulk � k
D2

L2
Pr Ref�Nu�2

p
Re � , (7)

eu,BK � k
D2

L2

q

Pr Ref�Nu�2
p

Re � , (8)

while eu,bulk and eu,BL are still given by (3),(4). Intro-
ducing (3),(4),(7),(8) into (1),(2) leads to the Ra,Pr de-
pendences of Nu,Re in the upper regime “u”. The pure
power laws Nu(Ra,Pr) and Re(Ra,Pr) in both the lower “l”
(lu , lu , small Pr) and the upper “u” (lu . lu , large Pr)
regimes are summarized in Table I.

Very large Pr regime.—We now extend the theory to
very large Prandtl numbers. As long as Ra . Rac � 1708

there still is wind, even for very large Pr, as Rac is inde-
pendent of Pr. However, this large scale wind Re slows
down with increasing Pr and eventually becomes laminar
throughout the cell. lu can no longer continue to increase
according to lu � L��4 Re1�2� with decreasing Re, but
will saturate to a constant value of order L. We call the cor-
responding Reynolds number Rec and lu � L��4

p
Rec �

in this very large Pr regime. To model the smooth transi-
tion to the very large Pr regime beyond the line Re � Rec,
i.e., if lu�Re� � L�4

p
Re approaches lu�Rec�, we use the

crossover function g�x� � x�1 1 xn�21�n of the crossover
variable xL � lu�Re��lu�Rec� �

p

Rec�Re, and again
n � 4. The function g increases linearly, g�xL� � xL,
below the transition (xL small) and is 1 in the very large
Pr regime with Re # Rec. In the above modeling for
the local dissipation rates we have to replace each lu by
g�xL�lu�Rec�.

The resulting formulas, given momentarily, will lead,
depending on Ra, to three new regimes, valid for very large
Pr, denoted as I,

` , I.
` , and III`; see Fig. 1 and Table I.

While Eq. (3) for eu,bulk is assumed to still hold in the
very large Pr range (where eu,bulk hardly contributes to eu

due to the large extension of the kinetic BLs), Eqs. (4)–(6)
must be generalized. First generalize (4) for eu,BL,

eu,BL � n
U2

g�xL�L2
�

n3

L4

Re2

g�
p

Rec�Re�
. (9)

Next eu,bulk: The wind velocity U in (5), which sets the
time scale of the stirring, has already been generalized to
Uf�lu�lu�. This equals U itself in the “l” and Ulu�lu

in the “u” regimes. Now, in addition, the explicit lu is to
be replaced by g�xL�lu�Rec�, i.e.,

eu,bulk � k
D2

L2
Pr Ref

∑

Nu

2
p

Rec

g

µ

s

Rec

Re

∂∏

. (10)

Equation (10) simplifies for large enough Ra (therefore
large f argument) and very large Pr (thus large g argument)

to eu,bulk � k
D2

L2

Pr Re

Nu . Inserting (9) and (10) into the rhs
of (1) and (2) leads to the new power laws describing the
heat flux and the wind velocity in the regime III` beyond
IIIu; cf. Fig. 1,

Nu � Ra1�3 Pr0, Re � Ra2�3 Pr21. (11)

Finally, eu,BL: In the thermal boundary layer range be-
yond Il , relevant for medium Ra, Eq. (6) stays valid, be-
cause its derivation did not involve lu and also f � 1. The
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TABLE I. The pure power laws for Nu and Re. The prefactors are based on the ci’s given after Eq. (14).

Regime Dominance of BLs Nu Re

Il eu,BL, eu,BL lu , lu 0.22 Ra1�4 Pr1�8 0.063 Ra1�2 Pr23�4

Iu lu . lu 0.31 Ra1�4 Pr21�12 0.073 Ra1�2 Pr25�6

I,
` lu � L��4

p
Rec � . lu 0.17 Ra1�3 0.038 Ra2�3 Pr21

I.
` lu � L��4

p
Rec � . lu 0.35 Ra1�5 0.054 Ra3�5 Pr21

IIl eu,bulk, eu,BL lu , lu 0.37 Ra1�5 Pr1�5 0.17 Ra2�5 Pr23�5

IIu lu . lu 0.51 Ra1�5 0.19 Ra2�5 Pr22�3

IIIu eu,BL, eu,bulk lu . lu 0.018 Ra3�7 Pr21�7 0.023 Ra4�7 Pr26�7

III` lu � L��4
p

Rec � . lu 0.027 Ra1�3 0.015 Ra2�3 Pr21

IVl eu,bulk, eu,bulk lu , lu 0.0012 Ra1�2 Pr1�2 0.025 Ra1�2 Pr21�2

IVu lu . lu 0.050 Ra1�3 0.088 Ra4�9 Pr22�3

range I,
` has to be described by Eqs. (1),(2),(9) (with g �

1), and (6), resulting in the same power laws as in regime
III`, i.e., Eqs. (11). For Pr values above regime Iu Eq. (6)
no longer holds. It originated from the heat transport equa-
tion. There we now have to use Uf�xu� instead of merely
U. The balance from the heat transfer equation then reads
Uf�xu��L � k�l

2
u . In the f argument xu � lu�lu , the

kinetic BL width lu and therefore the crossover function

g appears, leading to Pr Ref�
Nu

2
p

Rec
g�

q

Rec

Re �� � Nu2. For

very large Pr [where g�xL� � 1] above Iu [where f�xu� �

x
21
u ] one obtains the relation �Re Pr�1�3 � Nu, valid in I.

` .
Together with (1), (2), and (9) one derives the new scaling
laws in the interior of I.

` ,

Nu � Ra1�5 Pr0, Re � Ra3�5 Pr21. (12)

The scaling behavior Nu � Ra1�5 has earlier been sug-
gested by Roberts [14]. Note that in all three very large
Pr regimes Nu does not depend on Pr. Furthermore, the
upper bound Nu # const Ra1�3�1 1 log Ra�2�3, holding in
the limit Pr ! `, is strictly fulfilled [15].

Nu and Re in the whole parameter plane.—Plugging
now the generalized expressions for the local dissipation
rates into the balance Eqs. (1) and (2) finally results in

Nu Ra Pr22
� c1

Re2

g�
p

Rec�Re�
1 c2 Re3, (13)

Nu � c3 Re1�2 Pr1�2

Ω

f

∑

Nu

2
p

Rec

g

µ

s

Rec

Re

∂∏æ

1�2

1 c4 Pr Ref

∑

Nu

2
p

Rec

g

µ

s

Rec

Re

∂∏

. (14)

Here we have added the dimensionless prefactors where
appropriate to complete the modeling of the dissipation
rates. We have adopted them by a nonlinear fit with the
Levenberg-Marquardt method [16] to 151 experimental
data points Nu(Ra,Pr) obtained by Ahlers [8]; see inset of
Fig. 2b for the quality of the fit. The result for aspect ra-
tio G � 1 is c1 � 120, c2 � 74, c3 � 0.89, c4 � 0.048,
and Rec � 0.28, and all plots in this paper are based on
these numbers. Note that the ci and Rec may depend on
the aspect ratio and are not universal.

The set of Eqs. (13) and (14) is the second main result
of this paper. It allows one to calculate Nu(Ra,Pr) and
Re(Ra,Pr) in the whole Ra-Pr parameter space, including
all crossovers from any regime to any neighboring one.

All limiting, pure scaling regimes which can be derived
from Eqs. (13) and (14) are listed in Table I. The corre-
sponding phase diagram is shown in Fig. 1, completing
that of [12] towards very large Pr. Though in the phase di-
agram we have drawn lines to indicate transitions between
the regimes, we note that the crossovers are nothing at all
but sharp. All transitions are smeared out of broad ranges.
This holds the more, the more similar the scaling expo-
nents of the neighboring regimes are.

Discussion of Nu(Pr) and Nu(Ra).—The functions
Nu(Pr) (for fixed values of Ra) and Nu�Ra��Ra1�4 (for
fixed values of Pr) resulting from Eqs. (13) and (14) are
shown in Fig. 2. Nu saturates with increasing Pr. For
moderate Ra � 106 2 108 a maximum in Nu(Pr), result-
ing from the Nu decrease in regimes Iu and IIIu, can be
seen. It broadens to a plateau for larger Ra, due to the
lacking Pr dependence of Nu in regime IVu. The decrease
in regime IIIu from the plateau to the large Pr saturation
regime is shifted to larger Pr with increasing Ra, as sug-
gested by Fig. 1.

Figure 2b highlights the effects of having finite transi-
tion widths. For example, in regime IIl with Nu � Ra1�5

(for fixed Pr) the corresponding scaling exponent 1�5 2

1�4 � 21�20 becomes observable only for very small
Pr � 1023 1024. At Pr � 1021 the roughly four decades
of regime IIl (see Fig. 1) between regime Il and IVl , which
both have a stronger Ra dependence of Nu, are not suf-
ficient to reveal the scaling exponent. And at Pr � 100

the roughly 2.5 decades of regime IIl are nowhere suffi-
cient to lead to a local scaling exponent d lg Nu�d lg Ra
smaller than 1�4.

Similarly, for Pr � 1 only for very large Ra * 1014 pure
scaling Nu � Ra1�3 is revealed. For smaller Ra regimes Iu

and Il with Nu � Ra1�4 and IIu with Nu � Ra1�5 strongly
contribute, resulting in an effective local scaling exponent
(increasing with Ra) in the range between 0.28 (“2�7”) and
0.31, just as observed in experiment [1,2,4,5].

Comparison to more experiments.— In experiment, it is
hard to vary either Ra or Pr over many decades and at
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FIG. 2. (a) Nu as a function of Pr according to theory for Ra �

106, Ra � 107, . . . to Ra � 1015, bottom to top. (b) Nu�Ra1�4 vs
Ra for Pr � 1024, . . . , Pr � 100 (solid lines, bottom to top) and
for Pr � 101, Pr � 102, Pr � 103, and Pr � 104 (dashed lines,
top to bottom). The inset shows how well the data of Ref. [8]
can be fitted within this theory. Ra � 109.25 and Ra � 107.25

for the upper and lower curve, respectively.

the same time to keep the other variable fixed. So most
measurements are done along curved lines in the phase
space Fig. 1, mixing the Ra and Pr dependences. Now
Eqs. (13) and (14) allow one to calculate Nu and Re along
such a curve Pr(Ra). The present theory suggests that
inspite of the different Pr numbers the Nusselt number
in the Chavanne et al. experiment [4] should be nearly
indistinguishable (due to the lacking Pr dependence of Nu
in regime IVu) to that in the Niemela et al. experiment [5],
in contrast to what is found; see Fig. 3. Possibly, different
temperature boundary conditions have been applied in the
two experiments.

This research work was prompted by the experiments
of G. Ahlers [8], presented to us at the ITP-Workshop in
Santa Barbara in March 2000. We thank him for sharing
his results with us prior to publication and for performing
the side wall corrections. We also thank him and K. R.
Sreenivasan for continuous discussions.
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FIG. 3. Nu�Ra, Pr�Ra���Ra1�4 along the curve Pr(Ra) (shown
as boxes in the inset) given by the experimental restrictions of
in the Niemela et al. experiment [5]. The diamonds show the
side-wall-corrected (following Ref. [17]) data by Niemela et al.,
the solid line shows the result of the present theory (whose pa-
rameters had been adopted to data [8] in a different parameter
regime; see text). The boxes show the Niemela et al. data with-
out sidewall corrections, and the circles show the data from the
Chavanne et al. experiment [4] (also without sidewall correc-
tions), which were taken along the dashed line in the inset. The
Nusselt number along that line is practically indistinguishable
from that one along the solid line.
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