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In the limit of small capillary number (Ca ≡ ηV0/γ � 1), the dynamical meniscus
observed when a solid is removed at constant velocity (V0) from a bath of wetting liquid
(viscosity η, surface tension γ) is "stretched" : the film thickness along the wall decreases
monotonously from the classical static meniscus region to entrained film. If the motion of
the coated solid is reversed (it enters the bath instead of leaving it), the whole meniscus
shape changes: then it buckles and presents a stationary wavy shape. Here we study and
discuss both these situations.

1. Introduction
When a solid plate contacts a bath of wetting liquid, a meniscus forms close to the
place where solid, liquid and air meet. Surface tension (denoted as γ) is responsible for
this deformation of the bath, while gravity (we denote ρ as the liquid density) opposes
it, so that the size of the meniscus is of the order of the so-called capillary length
κ−1 ≡

√
γ/ρg, that is a few millimetres for most liquids. If the plate is moved at a

velocity V0, the meniscus is deformed, and the deformation depends on the direction of
the motion.
If the plate is extracted from the bath, some liquid is entrained, and thus the meniscus
is stretched. While its bottom part remains insensitive to the plate motion, a dynamic
region sets at the top of the static meniscus, matching it with the entrained film. The
characteristics of this dynamic meniscus were found to be crucial by Landau and Levich
(1942) and Derjaguin (1943), since they impose the thickness of the film drawn by
the solid plate. This thickness is the key parameter in many industrial processes (such
as fiber coating, deposition of films on ophthalmic glasses, dip coating, etc.) [Ruschak
(1985)], which explains why it was extensively studied in various geometries (tube, fiber,
Hele-Shaw cells, etc.) [Bretherton (1961), Quéré (1999), Park and Homsy (1984)].
Conversely, plunging the dry plate inside the liquid also deforms the meniscus, which is
observed to make a liquid wedge, meeting the solid with a non-zero angle. This angle
increases with the immersion velocity, as early described by Hoffman (1975), Tanner
(1979) or de Gennes (1985). The deformation in this case also raises an important
practical question, in particular in the limit of high velocities, where the dynamic angle
becomes of the order of 180◦, leading to air entrainment [Eggers (2004)].
For both motions, the deformation is induced by viscous forces (which generally domi-
nate inertia in the confined region of the meniscus tip), and resisted by surface tension.
Hence, the capillary number, Ca, which compares both these forces is the key dynamic
parameter to understand the meniscus deformation. It can be written Ca ≡ ηV0/γ, de-
noting η as the liquid viscosity. In the limit of small capillary numbers (studied in this
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Figure 1. Sketch of the deformation of a liquid close to a moving plate. Owing to the motion,
a dynamic meniscus (of length λ) forms at the top of the static meniscus (whose size if of the
order of the capillary length κ−1), and a film (of thickness h0) is entrained by the plate.

paper), we expect the deformations to be modest, compared to the natural millimetric
scale of the meniscus, κ−1, implying need for special optical techniques to investigate
the amplitude and nature of the deformations. Here we use an original experiment of
reflectometry, and first describe the shape and characteristic dimension of the dynamic
"stretched" meniscus, as entraining the plate. Then, we consider the reverse motion
of a coated plate entering a bath, and show that "compression waves" then appear,
contrasting with the more usual case of a dry solid, where a liquid wedge is observed.
We describe the peculiarities of this wavy meniscus, and try to understand its physical
origin.

2. Dragging a plate out of a wetting liquid
Figure 1 shows the deformation of the meniscus in the entrainment experiment. As a film
(of thickness h0) coats the plate, a dynamic meniscus (of characteristic length λ) sets at
the top of the static meniscus. The curvature of this zone generates a depression below
the surface, whose action is to suck the liquid entrained by viscosity along the plate.
Since the slope of the profile is small, the Laplace pressure can be simply expressed
as −γd2h/dx2 (where h is the local thickness, and x the motion axis), so that the
corresponding force per unit volume is: γd3h/dx3. As early proposed by Landau and
Levich (1942), in the limit of small capillary numbers (Ca0 ≡ ηV0/γ � 1), gravity
can be neglected in the description of the flow and the Navier-Stokes equation in the
dynamic meniscus region reduces to: ηd2u/dy2 = −γd3h/dx3, where y is the direction
perpendicular to the unidirectional flow u, along which velocity gradients take place.
Integrating this equation together with classical boundary conditions [no slip at the solid
surface (y = 0), negligible viscous stress at the free surface (y = h)], a Poiseuille profile
is found for the flow: u(y) = V0 − γ/2ηd3h/dx3y(y − 2h). Integrating u(y) over the film
thickness, gives the flux of liquid. This quantity must be conserved, in particular in the
region of the film where it writes h0V0, from which the differential equation of the film
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profile h(x) is deduced:

h0V0 = hV0 +
γ

3η

d3h

dx3
h3 (2.1)

As noted by Landau and Levich (1942), this equation can be made dimensionless by
scaling the film thickness h by the quantity h0, and the x variable by the length λ ≡
h0/(3Ca0)1/3. Denoting these dimensionless lengths as H = h/h0 and X = x/λ, equation
(2.1) can be rewritten as:

d3H

dX3
=

1−H

H3
(2.2)

To satisfy the boundary condition H (X = +∞) = 1 we can write, close to the film,
H (X) = 1 + ε (X) (ε� 1), which reduces equation (2.2) to : εXXX = −ε. This linear
equation admits solutions of the type ε (X) = αeβX with β3 = −1. Among the tree
solutions of this equation, two have positive real parts and thus diverge in the limit X =
+∞. We deduce that the only physical solution is β = −1, which leads to H = 1+αe−X ,
where α is a constant which reflects the invariance of the dynamical meniscus (2.2) with
respect to a translation along X. Close to the film, we thus expect the film thickness to
decay exponentially following the law:

h (x) = h0

(
1 + α.e−x/λ

)
(2.3)

More generally, equation (2.2) can be integrated numerically down to the meniscus
region, starting with the asymptotic shape H = 1+αe−X . Two examples of film profiles
obtained from such a numerical integration are displayed in figure 2 for two different
values of the constant α. Changing α leads to a translation of the profile. The main
observation is that HXX saturates to the value 0.644 in the limit X = −∞ [figure
2-(b)]. This behavior is indeed expected from equation (2.2): at large H, the right
hand side of the equation (quickly) vanishes, which means that d2H/dX2 (that is, the
dimensionless curvature of the profile) tends towards a constant. This property was
exploited by Landau and Levich: by matching this constant curvature with the curvature
of the top of the static meniscus (

√
2κ) allowed them to deduce the thickness of the

entrained film:

h0 ≈ 0.94κ−1Ca
2/3
0 (2.4)

Using the definition of λ, the characteristic of the dynamic meniscus can then be de-
duced. It writes:

λ ≈ 0.65κ−1Ca
1/3
0 (2.5)

These laws should be valid provided that the capillary number is much smaller than
unity, which ensures that h0 � λ (lubrication approximation), λ � κ−1 (the dynamic
meniscus hardly perturbs the static one), and a negligible role for gravity.
We tested experimentally these different predictions using reflectometry. The experiment
consists of illuminating the film with a source of white light and analyzing the interfer-
ence fringes produced from the light reflected by the film surface and the one reflected
by the solid substrate. We use as a substrate a mirror made of silicon. Knowing the
indices of both the solid and the liquid, the film thickness can be deduced from the
analysis of the interference pattern. The wavelength spectrum is 400− 800 nm, and the
incident and reflected lights are driven (and collected) using an optical fiber placed at a
distance of typically 5 mm from the solid. The thicknesses accessible by this technique
range between 20 nm and 30 µm. Less than 1 s is necessary for acquiring a data point,
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Figure 2. (a) Evolution of the film thickness H obtained via the numerical integration of
equation (2.2) with the initial profile (2.3) and for two different constant α = 1 (solid line) and
α = 0.1 (dashed line) (b) Evolution of the reduced curvature HXX obtained via the numerical
integration of equation (2.2) for two different constant α = 1 (solid line) and α = 0.1.

and the precision of the measurement is a few nanometers, much smaller than the film
thickness (which will rather be in the range of 1 to 10 µm).
We chose silicone oils as liquids. These oils completely wet silicon, and the viscosities we
used are 100 mPa s and 350 mPa s(where they are Newtonian, considering the applied
shear stresses). The substrate is fixed, and coating is achieved by lowering the reservoir of
oil. A step-by-step motor controls the motion of the reservoir, implying coating velocities
between 5 µm/s and 25 µm/s, with a precision smaller than 1 µm/s. While the film is
deposited, the meniscus moves with respect to the (fixed) optical fiber, which measures
the thickness every second, and thus at different points of the dynamic meniscus.
Figure 3-(a) shows an example of such a scan. It was obtained while withdrawing the sili-
con wafer at a velocity V = 25 µm/s out of a silicone oil of surface tension γ = 20 mN/m
and viscosity η = 100 mPa.s, for which the capillary length κ−1 is 1.5 mm. The corre-
sponding capillary number is very low (1.25 × 10−4) , in the range of applicability of
Landau-Levich laws. Then, we expect (from Eq. 2.4) a thickness for the deposited film
of 3.5 µm, in excellent agreement with the value observed at large x in figure 3-(a). It
is also observed that the film is flat, which confirms that gravity (whose effect is to
thin the film) can indeed be neglected in this limit of small capillary numbers. In the
same figure, we emphasize that the profile is very well fitted by an exponential function
h(x) = h0

(
1 + αe−x/L

)
, as expected from Eq. 2.3. We deduce from the fit a value for

L, which for this particular example is found to be 47 ± 1 µm. This value is in good
agreement with the length expected from Eq. 2.5, which is 47 µm.
We repeated this experiment for different oil viscosities and withdrawal velocities, which
allowed us to vary the capillary number between 10−4 and 2 × 10−4. In each case, the
profile of the dynamic meniscus could nicely be fitted by an exponential law, whose
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Figure 3. (a) Stationary profile of the dynamic meniscus in the region of the entrained film, as
obtained from a reflectometry experiment, for a silicon wafer drawn at V = 25 µm/s out of a
bath of silicone oil of surface tension γ = 20 mN/m and viscosity η = 100 mPa.s. The dots are
the data, and the line is an exponential fit of characteristic length L = 47µm. (b)Characteristic
length L of the dynamic meniscus deduced from fits such as reported in (a) as a function of the
length λ expected from Landau-Levich theory and calculated from Eq. (2.5). Both quantities
scatter around the line L = λ.

characteristic length L is plotted in Figure 3-(b) as a function of λ, i.e. the length
calculated from Eq. (2.5) for each experiment. There again, the fit is quite good (the
data scatter around the line L = λ), without any adjustable parameter. This first series
of experiments thus shows the validity of the description proposed by Landau and Levich,
in the limit of small capillary numbers (Ca < 10−3).

3. Pushing the wetted plate back into the pool
We now consider what happens as immersing the coated plate inside the bath of the
same oil. For each constant immersion velocity V , a stationary profile is observed. There
again, the motion distorts the top of the quasi-static meniscus, but the shape of the
interface is found to differ considerably from what can be seen as plunging a dry solid
at similar velocities in the same bath. As reported in Figure 4, we observe here ripples,
instead of a monotonous profile.
The force balance should be the same as earlier, the only difference being that the
velocity is now −V instead of V0. This transformation in Eq. (2.2) yields an equation
for the dimensionless profile (where h and x are again scaled by h0 and λ, given in Eq.
(2.4) and (2.5)):

d3H

dX3
=

H − 1
H3

(3.1)

Close to the film, the linearisation of equation (3.1) (H (X) = 1 + ε (X)) leads to εXXX =
ε, whose physical solutions (as noted by Bretherton (1961)) are ε (X) = αβ1X

1 and
ε (X) = αβ2X

2 with β1 = −1/2 + i
√

3/2 and β2 = −1/2 − i
√

3/2. The film thickness
thus varies as H (X) = 1 + α1e

−X/2ei
√

3/2X + α2e
−X/2e−i

√
3/2X . Since H is real, we can

rewrite the film thickness as:

H(X) = 1 + αe−φ/
√

3e−X/2 cos

(√
3X

2
+ φ

)
(3.2)

This function indeed shows an oscillatory behavior, damped by an exponential decay as
going to the film region. The phase φ reflects the invariance of the dynamical meniscus
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Figure 4. Stationary profile of the dynamic meniscus, for a plate coated by a thin film
(h0 = 4.46 µm) of silicone oil (γ = 20 mN/m and η = 350 mPa.s) immersed at V = 10 µm/s
inside a bath of the same silicone oil. The data are obtained by reflectometry. The profile is
found to be wavy, with a wavelength W of about 200 µm and amplitude A of about 0.3 µm.

(3.1) with respect to a translation along X.The effect of the second constant α can be
seen on figure 5.
Examples of film profiles obtained via the numerical integration of equation (3.1) with
the initial profile (3.2) are presented on figure 5 for three different values of the constants
α and φ. Changing φ just translates the profile, while changing α affects the amplitude
of the oscillations. Apart from the translation, and modification of the oscillations, the
main observation is that HXX saturates in the limit X = −∞ [figure 5-(b)]. Unlike the
out-going case described by equation (2.2), the reduced curvature saturates to a value
which depends on α. The evolution of the saturated curvature HXX (−∞) is presented
on figure 5-(c) as a function of the constant α.
The fact that the reduced curvature does not always reach the same value in the limit
X = −∞ should not be a surprise: it is related to the fact that the coating velocity V0 is
independent from the penetration velocity V . This can be shown using the relation hxx =
h0/λ2HXX from which we get : HXX = h0.hxx/ (3.Ca)2/3. Since h0 = 0.94 κ−1Ca

2/3
0

and hxx =
√

2 κ, we find:

HXX (−∞) ≈ 0.64
(

Ca0

Ca

)2/3

(3.3)

If Ca = Ca0 we recover the former limit HXX = 0.64. If V > V0 the reduced curvature
is lower and the wavy character less pronounced [figure 5]. On the other hand (V < V0),
HXX is larger and the profile more wavy. According to equation (3.3) the ratio V0/V ,
which is controlled experimentally, imposes the reduced curvature HXX . One can thus
find a corresponding value for the constant α [figure 5-(c)] and compare the experimental
profile to the theoretical one.
Considering the experiments, equation (3.1) also suggests that the results should rather
be presented in this dimensionless fashion, which is done in Figure 6 for two different
experiments. It is observed that the data collapse in a unique curve. This curve is fairly
well fitted by the numerical solution of Eq. (3.1) (drawn in full line), which is solved and
matched with the film (which yields a solution very close to Eq. (3.2) with α = 1). The
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Figure 5. (a) Evolution of the film thickness H obtained via the numerical integration of
equation (3.1) with the initial profile (3.2) and for different constants α = 0.1, φ = 0 (thin solid
line), α = 0.1, φ = π (thick solid line) and α = 0.2, φ = 0 (thin dashed line). (b) Evolution of the
reduced curvature HXX obtained via the numerical integration of equation (3.1) for different
constants α = 0.1, φ = 0 (thin solid line), α = 0.1, φ = π (thick solid line) and α = 0.2, φ = 0
(thin dashed line). (c) Evolution of the constant curvature HXX (−∞) as a function of the
constant α.

fit nicely captures the period of the wave, yet slightly overestimates the height of the
largest bump. This numerical solution also predicts the existence of a second minimum
close to X = 0, but this region could not be characterized experimentally, owing to the
very large slope of the profile at small X, which makes it impossible to get reflectometry
data.

4. Wave versus wedge.
The shape of meniscus could have been very different: as noted above, when forcing a
(dry) plate to enter a bath the deformation is very different in shape: a liquid wedge
forms at the top of the meniscus, forming there a dynamic angle θ which is known to
be fixed by the value of the corresponding capillary number. For a wetting liquid, this
angle obeys the so-called Tanner’s law (Tanner (1979)), which specifies that the angle
increases as the cubic root of the capillary number, for small Ca (Ca� 1):

θ = ζCa1/3 (4.1)

where ζ is a numerical constant, which was found experimentally to be of the order of
4.5.
Eq. (4.1) can be understood as follows [de Gennes (1985)]. Surface tension resists de-
formation, and generates a restoring force which can be written γ (1− cos θ), per unit
length of the contact line. In the limit of small angles, this force reduces to γθ2/2.
The viscous force responsible for the deformation can be calculated by integrating the
quantity η∇u within the wedge. This quantity scales as ηV/θx (where the origin of x is
taken at the top of the wedge), which must be integrated over x. Hence a logarithmic
divergence, which can be treated by introducing a cut-off a at small x, corresponding
physically to a (microscopic) slip, or to the presence of a (microscopic) wetting film. We
note Γ this logarithmic term. Γ is of the order of 15 for a dry solid [Γ ≈ ln

(
κ−1/a

)
],

and can be significantly smaller, of order 6, if the wedge slips on a film of thickness h0
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Figure 6. Stationary profile of the dynamic meniscus, for a plate coated by a thin film at a
velocity V with a film of silicone oil (γ = 20 mN/m and η = 350 mPa.s) and then immersed at
V inside a bath of the same oil. The film thickness is scaled by the thickness of the deposited
film, and the x coordinate by the Landau-Levich length of dynamic meniscus [Eq. (2.5)]. The
data correspond to V = 10 µm/s (triangles) and to V = 20 µm/s (squares). The line is the
numerical solution of Eq. (3.1), with a matching condition with the film (which yields a solution
very close to Eq. (3.2), with α = 1)

of a few micrometers (Γ ≈ ln
(
κ−1/h0

)
. The viscous force is thus found to scale as ηV/θ,

with a numerical coefficient which includes Γ. Balancing this force with the capillary
force γθ2/2 yields Tanner’s law [Eq. (4.1)].
We can thus calculate the rate of energy dissipation Ė in both the wedge geometry, and
for the wavy profile. In each case, we know the velocity profile and the geometry of the
flow, so that we can calculate this rate, expressed as η

∫
(∇u)2 dΩ, where the integral is

calculated on the volume Ω of the liquid corner. For the wedge geometry, we find:

Ė ≈ 1.65 Γ2/3 γV Ca2/3 (4.2)

For the wavy profile, there is a film which is first deposited, whose thickness obeys Eq.
(2.4): h0 = 0.94κ−1Ca

2/3
0 , where we denoted Ca0 as the capillary number at which the

deposition was achieved (in a general case, the deposition velocity can differ from the
immersion velocity). Knowing the interface profile in this case [Eq. (3.2)], we can also
calculate the rate of energy dissipated by viscosity. It writes:

Ė ≈ 1.34 γV Ca
2/3
0

(
V0

V

)2/3

(4.3)

In the particular case when deposition and immersion are performed at the same speed
(Ca = Ca0), the latter expression reduces to:

Ė ≈ 1.34 γV Ca2/3 (4.4)

whose scaling is similar to the one in the wedge [Eq. (4.2)]. In this case (V = V0), and
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Figure 7. Dimensionless amplitude and wavelength of the wavy pattern as a function of the
ratio between the withdrawal and immersion velocities. Circles: experimental data for silicone
oil with viscosity 100 mPa. s, and triangles: viscosity 350 mPa.s. Solid line: numerical data.

taking Γ = 6, we find that the coefficient in Eqs. (4.2) and (4.4) are about 10 and 1.34,
respectively, which shows that the energy dissipated by viscosity is significantly smaller
in the wavy meniscus than in the wedge. This might explain why in this case we always
observe a wavy meniscus (as reported in Figs. 4 and 6), which in addition is nicely fitted
by the expected profile [Eq. (3.2) and Fig. 6].
In a more general case, we must compare Eqs. (4.2) and (4.3), and the dissipation is
minimal in the wavy meniscus provided that:

V

V0
>

1
1.37 Γ

≈ 0.1 (4.5)

In order to check this criterion, we did a series of experiments where we varied in a large
extent the velocities V0 and V of both the withdrawal (which fixes the thickness of the
deposited film) and the immersion. In each case we measured the amplitude A of the
maximum peak, in the wavy part, and the wavelength W of the interface presented on
figure 4. For each experiment, we calculated the expected profile [Eq. (3.2)], and deduced
from these calculations the theoretical values of A and W . We report in Figure 7 the
comparison between both quantities (scaled by h0 and λ, respectively), as a function of
the ratio V/V0, which appears to be the quantity to consider, as seen from Eq. (4.5).
The agreement between the measured and calculated amplitude and wavelength of the
oscillation of the profile is quite good, provided that the ratio V/V0 is large enough.
Below a value of the order of 0.1, which is the same in both graphs, the data deviate more
and more from the theoretical values, as expected from equation (4.5). This transition
remains to be described and understood.

5. Conclusion
We studied by reflectometry the characteristics of the dynamic meniscus, that is the
transition region between a static meniscus and a film deposited on a moving solid. If
the solid is extracted from the bath, the shape of the "stretched" dynamic meniscus
was found to be exponential (close to the deposited film), with a characteristic length
slowly increasing as a function of the capillary number (as Ca1/3). These features are in
excellent agreement with the classical Landau-Levich picture.
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Once coated with a film, the plate can be immersed in the bath. Looking at the simple
case where both the deposition and the coating velocities are of the same order, it was
observed that the dynamic meniscus presents a wavy shape. We studied the amplitude,
wavelength and envelope of this shape, and found that all these characteristics are very
well understood by taking into account an old remark made by Bretherton.
It is worth wondering why such a shape shows up, instead of the classical wedge observed
when plunging a dry solid in a wetting bath. By comparing the viscous dissipation in
both cases (i.e. wave versus wedge), we showed that the wavy shape corresponds to a
minimum dissipation, provided that the immersion velocity is larger than about 10%
of the deposition velocity. If this criterion is not obeyed, our experiments indicate that
the Bretherton picture does indeed not capture anymore the meniscus profile, implying
a transition towards a less well-defined shape. We plan in the future to describe this
regime, in order to understand if (and how) the system then moves towards a wedge, the
solution classically observed in the case of a zero deposition velocity (i.e. dry solid). In
the latter case, our calculations indeed show that the dissipation in a wedge is smaller
than in a wavy meniscus, making it clear why the first of these shapes is then observed.
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