High-speed imaging of drops and bubbles

Sigur đur T. Thoroddsen Mechanical Engineering National University of Singapore

PhD students: Li Erqiang & Fenghua Zhang Internship student: Marie-Jean Thoraval (Ecole Polytechnique)

- \bullet **How fast do free-surface flows move?**
	- Drop and bubble oscillations
	- Coalescence Cascade of a drop
- • **Imaging and high-speed camera types**
	- Rotating mirror cameras
	- Image converter cameras
	- Very fastest cameras
	- CCD and CMOS high-speed video cameras
- • **The pinch-off of a drop or a bubble from a nozzle**
	- Relevant forces
	- Low viscosity pinch-off
	- Effect of higher viscosity
- \bullet **Coalescence of two drops or two bubbles**
	- Similarity solutions
	- Experimental considerations
	- Simple dynamical models
	- Interface shape and capillary waves
	- Miscible drops

Outline

- • **1. How fast do free-surface flows move?**why 1,000,000 fps?
- • **2. Imaging and high-speed camera types** high-speed CCD video cameras
- • **3. The pinch-off of a drop or a bubble from a nozzle**Different dynamics!
- \bullet **4. Coalescence of two drops or two bubbles** Miscible drops

Parameter Space

- **Relevant forces:**
	- 1. Surface tension, *^σ*
	- 2. Inertia
	- 3. Viscous forces
- Ignore Gravity, $dx = \frac{1}{2} g t^2$ in $t = 1$ ms, $dx = 5 \mu m$ in free-fall

- •*We = ρD U2 / ^σ* **kinetic / surface energies**
- *Ca = μU/^σ*

 Dynamic air pressure! Drop shape

•

•

1. How fast do free-surface flows move?

$$
\omega_2 = \sqrt{\frac{\sigma}{\rho R_i^3}}
$$
 R = 100, 10, 1 µm
\n $\omega_2 = 3.8$, 120, 3800 kHz

Small impact velocity Drop rests on pool surface

Real time

2250 frames/s

Coalescence Cascade

Thoroddsen & Takehara (2000) *Phys. Fluids*, **12**, p. 1265 Liquid-Liquid case → Charles & Mason (1960) *J. Colloid Sci.* **15**, 105

Time-scale of each step $\quad \ \ \mathcal{T}_s$ Time between first contact \rightarrow daughter drop pinch-off

Capillary-inertial Scaling

•Geometric similarity:

• Dynamic similarity:

$$
T_{\sigma} = (\rho D^3/\sigma)^{1/2} \qquad \Longrightarrow \ U = D / T_{\sigma}
$$

$$
We = \rho \, DU^2/\sigma = \rho \, D \, \left(\frac{D}{\rho} \, \frac{D^3}{\sigma}\right)^{1/2} \, \left(\frac{D}{\sigma}\right)^{1/2} \, \left(\frac{D
$$

How small?

Coalescence Times for alcohol

$$
U = D/T_{\sigma}
$$

\n
$$
Re = \rho D U/\mu = \rho D (D / (\rho D^{3} / \sigma)^{1/2})/\mu
$$

\n
$$
= (\rho D \sigma)^{1/2}/\mu \sim D^{1/2}
$$

\n
$$
weak \neq D
$$

Smallest drop, $D \sim 180 \ \mu m \implies Re = 60$

Blanchette & Bigioni (2006) *Nature Phys.* **2**, 254-257

For water, smallest mother drop *R = 22* μ m Mercury, *R* = 0.5 μm.

Thoroddsen (2006) *Nature Phys.,* **2,** 223-224 Blanchette & Bigioni (2006) *Nature Phys.,* **2**, 254-257 Thoroddsen & Li

Mercury, smallest mother drop \approx **0.5 µm. Time of phenomenon [≈] 0.1 μ^s**

Optical magnification

- Microscopic observations
- Velocity of 1 m/s => 1 μm in 1 μs
- Diffraction limit $~\sim~0.5$ µm

\rightarrow TEM ?

Transmission Electron Microscopes

Structured illumination

Gustafsson (2005) *PNAS*, **102**, pp. 13081-86

Outline

- • **1. How fast do free-surface flows move?**why 1,000,000 fps?
- • **2. Imaging and high-speed camera types** high-speed CCD video cameras
- \bullet **3. The pinch-off of a drop or a bubble from a nozzle**Different dynamics!
- \bullet **4. Coalescence of two drops or two bubbles** Miscible drops

2. Imaging and high-speed camera types

–Rotating mirror cameras

–Image converter cameras

–Very fastest cameras

–CCD and CMOS high-speed video cameras

Streak cameras

Move the image point

Rapidly across the recording medium

Convert time into space coordinate on the 'film'

Image-converter cameras

Few frames, poor image quality

The very fastest cameras

Laser Implosion of pellet, Inertial Confined Fusion

X-rays

Shiraga et al. (2004) *Rev. Sci. Instrum.* **75**, 3921-25

Using UV light

Kodama et al. (1999)

Rev. Sci. Instrum. **70**, 625 - 628

CCD vs CMOS sensors

• Both based on

Metal Oxide Semiconductors using the *Photo-electric* effect

• Differences:

Transfer of electron packages between registers

Ultra-High-Speed ISIS Video CCD Sensor

260 x 312 pixels, 103 frames **Triggering Shimadzu Corp. \$ 250 k**

160 Gb / sec

Etoh, Poggemann, Kreider *et al.* (2003) *IEEE Trans. on Electron Dev.* **50**, 144--151. *"An image sensor which captures 100 consecutive framesat 1000,000 frames/s"*

Challenges

- • Higher frame-rates
	- -Drive signal damping
- •Larger number of pixels
- Total number of frames
	- -Space for the storage element

Terraced sensors

Latest Sensor: High-Definition

410 x 720 pixels

Terraced sensor

Outline

- • **1. How fast do free-surface flows move?**why 1,000,000 fps?
- \bullet **2. Imaging and high-speed camera types** high-speed CCD video cameras
- \bullet **3. The pinch-off of a drop or a bubble from a nozzle**Different dynamics!
- • **4. Coalescence of two drops or two bubbles** Miscible drops

3.a Pinch-off of a drop from a nozzle

acceleration ~ F_{σ} /M ~ 1 / **L²**

acceleration tends to infinity for small L !

Drop pinch-off: driven by capillary-inertial dynamics

$$
R \sim t^{2/3}
$$

Eggers J. (1997) Non-linear dynamics and breakup of free-surface flows. *Rev. Mod. Phys.* **69**, 865 - 929

Bubble pinch-off:

Surface tension becomes irrelevant

$$
R \sim t^{0.57}
$$

Pinch-off of a water drop Formation of a satellite thread

Oscillations of the satellite Formation of a bottom jet

Speed and size of jet?

Thoroddsen, Etoh & Takehara (2007) Micro-jetting from wave focusing on oscillating drops. *Phys. Fluids* **19**, 052101

Satellite controls

- Nozzle size
- Surface tension
- Liquid density
- Air density
- Liquid viscosity
- *Flow-rate into the drop*

Time between subsequent drop pinch-off

3.b The pinch-off of a bubble

dt = 0.5 ms OD = 2.7 mm

Recent references on bubble pinch-off

- Burton, Waldrep & Taborek (2005) Scaling and instabilities in bubble pinch-off. *Phys. Rev. Lett.* **94**, 184502
- Keim, Møller, Zhang & Nagel (2006) Breakup of air bubbles in water: breakdown of cylindrical symmetry. *Phys. Rev. Lett.* **97**, 144503
- Thoroddsen, Etoh & Takehara (2007) Experiments on bubble pinch-off. *Phys.Fluids* **19**, 042101

Burton, Waldrep & Taborek (2005)

Very viscous liquid

Intermediate viscosity air thread!

Water

Keim, Møller, Zhang & Nagel (2006)

Air pinch-off

from an asymmetric nozzle

Intermediate viscosity

Time-resolved break-up of air thread

1 M fps

Experimental Setup

- Slowly growing bubbles, T \sim 10 s
- 'Vertical' tube
- Gravity feed through gate valve
- Highly repeatable

Typical clips, air in water

100 000 fps 500 000 fps 3-4 μm / px 8-10

8-10 μm / px

Shapes not self-similar Air bubble in water

 $\mathsf R$ and $\mathsf L_{_{\mathsf Z}}$

 $L_z \sim R_{min}^{\beta} \sim (t^{\alpha})^{\beta} \sim t^{\alpha\beta} \sim t^{\gamma}.$

Particle paths inside liquid, follow potential theory

Can surface tension be ignored?

Finite neck length at pinch-off ?

