Fluid•DTU Summer School "Complex Motion in Fluids" 7-13 August 2011, Humlebæk, Denmark

Wakes behind wings

Thomas LEWEKE

Institut de Recherche sur les Phénomènes Hors Équilibre (IRPHÉ) CNRS / Aix-Marseille Université / Ecole Centrale Marseille, France

Contributions from:

- C. H. K. Williamson, G. D. Miller (Cornell University)
- P. Meunier, C. Roy, L. Lacaze, N. Schaeffer, S. Le Dizès, A. Verga, U. Ehrenstein, H. Bolnot (IRPHE)
- K. Ryan, M. C. Thompson, K. Hourigan, M. Sherry, J. Sheridan (Monash University)
- F. Laporte, A. Corjon, D. Darracq (CERFACS & Airbus, Toulouse)
- M. Rossi, I. Delbende (Institut d'Alembert / LIMSI, Paris)
- J. N. Sørensen (DTU)

European projects

- "C-Wake" (Wake Vortex Characterisation & Control, 2000-2003)
- "FAR-Wake" (Fundamental Research on Aircraft Wake Phenomena, 2005-2008)

Collaborations with Airbus & Eurocopter

Aircraft wake vortices (examples)

Aircraft wake vortices (examples)

Visualisations of aircraft trailing wakes

SEMPRE A BORDO. SEMPRE REFRESCANTE.

Wing tip and flap tip vortices

Wing tip vortex in wind tunnel

Wing tip vortices in catapult facility

Source: ONERA Lille

http://www.onera.fr/cahierdelabo/english/asub8.htm

Visualisations of aircraft trailing wakes

Higuchi (1993)

Photo: Cessna Aircraft Company

- danger for following aircraft (downwash, roll)
- minimum separation distances \rightarrow limits airport capacity

Rules for separation distances (before A380)

(source: International Civil Aviation Organization ICAO)

Airbus A380

	A380	B747
wing span	79.8 m	64.4 m
MTOW	560 t	400 t

Current rules for separation distances

Wakes behind rotating wings

- helicopters
- propellers
- wind turbines

Hand *et al*. (2001)

Senocak et al. (2002)

Wakes behind rotating wings

wind turbines

 destabilisation/decay of the helical vortex wake

helicopters

 transition from helical wake to Vortex Ring State (VRS) in steep descent

Overview

Basic elements of vortex dynamics and wing wakes

- Vorticity/circulation, vortices, lifting surface, wake vortex systems
- Merging of co-rotating vortices
- Three-dimensional instabilities
 - Long wavelength (Crow instability)
 - Medium wavelength
 - Short wavelength (elliptic instability)
- Vortex reconnection
- Meandering
- Pairing instability of helical vortices

Nomenclature and definitions

> velocity
$$\vec{u} = [u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)]$$

$$\Rightarrow \text{ vorticity} \qquad \vec{\omega} = \vec{\nabla} \times \vec{u} = \left(\frac{\partial v}{\partial z} - \frac{\partial w}{\partial y}, \frac{\partial w}{\partial x} - \frac{\partial u}{\partial z}, \frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) \vec{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \qquad \Rightarrow \quad \vec{\nabla} \cdot \vec{\omega} = 0$$

$$\succ \text{ circulation } \Gamma = \oint_C \vec{u} \cdot d\vec{l}$$
$$= \int_S \vec{\omega} \cdot d\vec{S}$$

Common hypotheses

Newtonian fluid

└→ stresses ∝ velocity gradients

> constant-density fluid, $\rho(x,y,z,t) = const.$

- **→** barotropic
- <u>conservative</u> volume forces

$$\vec{F} = -\vec{\nabla}\Phi$$

Balance and evolution equations

Conservation of mass ("continuity")

Navier-Stokes equation

$$\frac{D\vec{u}}{Dt} = -\frac{1}{\rho}\vec{\nabla}p' + v\,\Delta\vec{u}$$

Vorticity equation

$$\frac{D\vec{\omega}}{Dt} = (\vec{\omega} \cdot \vec{\nabla})\vec{u} + v\,\Delta\vec{\omega}$$

$$\Delta = \nabla^{2}$$
Laplacian
$$\frac{D}{Dt} = \frac{\partial}{\partial t} + (\vec{u} \cdot \vec{\nabla})$$
material derivative
$$p' = p + \rho \Phi$$
p: pressure
v: kinematic viscosity

Laws and theorems

Biot-Savart relation

$$\vec{u}(\vec{r},t) = -\frac{1}{4\pi} \int_{V} \frac{(\vec{r} - \vec{r}') \times \vec{\omega}(\vec{r}',t)}{|\vec{r} - \vec{r}'|^{3}} d^{3}r'$$

> Kelvin's Theorem for an ideal fluid (v = 0)

"The circulation of any closed material line is conserved during its motion"

- Theorems and laws of Lagrange and Helmholtz
- → <u>summary</u>: In an ideal fluid, the circulation of each fluid element is constant in time and advected by the velocity field

Vortices

- local concentration of vorticity
- (fairly) axisymmetric
- tube-like structure

• circulation Γ

• core radius a

• Reynolds number $Re = \Gamma / v$

- calculate $\vec{u}(\vec{r}(l)) = \vec{u}_{ext} + \vec{u}_{int}$
- using Biot-Savart
 - $\vec{\omega}d^3r' \rightarrow \Gamma d\vec{l}$

$$\vec{u}_{ind}(\vec{r},t) = -\frac{\Gamma}{4\pi} \int_{L} \frac{(\vec{r}-\vec{r}') \times d\vec{l}}{\left|\vec{r}-\vec{r}'\right|^{3}}$$

Vortex filaments

Problem:

- singularity for $\vec{r} = \vec{r}'$

Solution:

- reconsider finite core size *a*
- $-a \ll R_o$, $a \ll L$

$$\Gamma$$

$$r$$

$$r(l)$$

$$r(l)$$

$$\vec{u}_{ind}(\vec{r},t) = -\frac{\Gamma}{4\pi} \int_{L} \frac{(\vec{r}-\vec{r}') \times d\vec{l}}{\left|\vec{r}-\vec{r}'\right|^{3}}$$

Vortex filament evolution

Local Induction Approximation

Flow around a wing (1)

Circular cylinder in 2D (degenerated wing)

• potential flow ($\vec{\omega} = 0$ everywhere)

without circulation

ho force
 on cylinder

with circulation, $|\Gamma| < 4\pi Ua$

 $\textbf{ift force} \\ L = \rho \ U \ \Gamma$

Flow around a wing (2)

Airfoil at incidence in 2D

Flow around a wing (3)

Airfoil at incidence in 2D

starting vortex behind an impulsively translated airfoil (Prandtl & Tietjens 1934)

Flow around a wing (4)

3D (rectangular) airfoil (finite wing span)

Flow around a wing (5)

Global vortex system of a finite-length airfoil in motion

Flow around a wing (6)

Non-rectangular wing

• distribution Γ(y) not constant

 shedding of a vorticity sheet
 between y = 0 and y = B/2

• circulation density $\gamma(y) = d\Gamma / dy$

Vortex system in the wake of a civil aircraft – typical take-off/landing configuration – (including horizontal tail plane)

Vortex system in the wake of a civil aircraft

- typical take-off/landing configuration -

Vortex system in the wake of a civil aircraft

- typical take-off/landing configuration -

Dynamics of two point vortices - same circulation -

Dynamics of two point vortices

- different circulations -

Vortex pair parameters

rate of strain induced by one vortex on the other: $\varepsilon = \Gamma / 2\pi b^2$ ($\varepsilon^* = a^2/b^2$)

Overview

Basic elements of vortex dynamics and wing wakes

- Vorticity/circulation, vortices, lifting surface, wake vortex systems
- Merging of co-rotating vortices
- Three-dimensional instabilities
 - Long wavelength (Crow instability)
 - Medium wavelength
 - Short wavelength (elliptic instability)
- Vortex reconnection
- Meandering
- Pairing instability of helical vortices

2D merging (*Re* = 500–2500)

The mechanism of merging

Asymmetric 2D merger

$$\Gamma_2 / \Gamma_1 = 0.25; a_2 / a_1 = 0.5$$

