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Our unifying theory of turbulent thermal convection[Grossmann and Lohse, J. Fluid. Mech.407,
27 (2000); Phys. Rev. Lett.86, 3316 (2001); Phys. Rev. E66, 016305 (2002)] is revisited,
considering the role of thermal plumes for the thermal dissipation rate and addressing the local
distribution of the thermal dissipation rate, which had numerically been calculated by Verzicco and
Camussi[J. Fluid Mech.477, 19 (2003); Eur. Phys. J. B35, 133(2003)]. Predictions for thelocal
heat flux and for the temperature and velocity fluctuations as functions of the Rayleigh and Prandtl
numbers are offered. We conclude with a list of suggestions for measurements that seem suitable to
verify or falsify our present understanding of heat transport and fluctuations in turbulent thermal
convection. ©2004 American Institute of Physics. [DOI: 10.1063/1.1807751]

I. INTRODUCTION

Turbulent Rayleigh–Bénard convection is one of the
classical problems of fluid dynamics. For recent reviews we
refer to Refs. 1 and 2; for an earlier review to Ref. 3.

One of the key questions is: How do the Nusselt(Nu)
and the wind Reynolds(Re) number depend on the Rayleigh
(Ra) and Prandtl(Pr) number?(The dependence on the as-
pect ratioG is not considered here; we takeG=1. Predictions
on the aspect ratio dependence of Nu and Re have been
given in Ref. 4.) For a long time it had been believed that
there were power law dependences of Nu and Re on Ra and
Pr, though there was a fierce debate on the values of the
power law exponents. Recent experiments by various
groups5–12seem to suggest that the Ra and Pr dependences in
general are more complicated than simple power laws. This
finding has been predicted by our recent unifying theory on
turbulent thermal convection.13–15

In that theory the volume averaged kinetic dissipation
rate eu=nkf]iujsx ,tdg2lV,t and the thermal dissipation rateeu

=kkf]iusx ,tdg2lV,t are split into their boundary and bulk parts,
which are then modeled with the corresponding length, ve-
locity, and temperature scales in the bulk or boundary layer,
respectively. This leads to certain scaling behaviors of the
individual terms of the balanceseu=eu,bulk+eu,BL and eu

=eu,bulk+eu,BL, but not to pure scaling of Nu(Ra,Pr) (see Fig.
2 of Ref. 14) and Re(Ra,Pr) (see Fig. 3 of Ref. 15).

Though we are not aware of experiments which are in-
consistent with our theoretical results for Nu(Ra,Pr) and
Re(Ra,Pr), there is a recent numerical finding that requires
reconsideration of our theory: Verzicco and Camussi16 and
Verzicco17 numerically found that the ratio ofeu,BL andeu,bulk

is basically independent of Ra, whereas our theory suggests
that the bulk part of the thermal dissipation rate should take
over for large Ra. The theory also says that the latter is true

in the case of thekineticdissipation rateeu. Here the numeri-
cal simulations16 indeed show that for the kinetic dissipation
rate the bulk contribution becomes dominant for large Ra,
just as our theory predicts.

In Sec. II we will make a suggestion how one might
properly include also thethermal plumes, in addition to the
thermal boundary layers on the top and bottom plates. We
understand these plumes asdetachedthermal boundary layer.
Correspondingly, both thermal plumes and thermal boundary
layer are assumed to have the same characteristic length
scale, namelylu, the thickness of the thermal boundary
layer. Following this thought, the thermal dissipation rateeu

can then be split into two differently scaling contributions:
the thermal dissipation due to the plumespl together with the
smooth parts of the BLeu,pl and the thermal dissipationeu,bg

of the turbulent backgroundbg,

eu = eu,bg + eu,pl. s1d

Thermal plumes seem to be extended in the direction in
which they are advected.18 The observations reported in
Refs. 18 and 19 suggest that the thermal plumes are mainly
sheet-like structures rather than mushroom-like structures,
which would occur from a point-wise heat source. The same
is suggested by numerical simulations of thermal convection
by F. Toschi (private communication). Funfschilling and
Ahlers18 explain the sheet-like structures with the flow orga-
nization in the thermal BL just beyond the onset of convec-
tion therein. This flow organization is in rolls.20 It is the
extension in the second dimension which makes their experi-
mental detection easier and more likely. The plume signa-
tures will be discussed in Sec. II C.

Equation(1) turns out to be a slight modification or ex-
tension of our previous interpretation only, namely, the inclu-
sion of the “detached” boundary layers(plumes) in the ther-
mal dissipation rate. There will be no change in our previous
quantitative results for Nu and Re as functions of Ra and Pr.

The physical reason behind this splitting intobg and pl
contributions is the close relation ofeu with the heat flux Nu.
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Based on our unifying theory, we are able to make predic-
tions on the heat flux carried by the turbulent background
fluctuation and by the plumes(Sec. III). If one wants to
check these predictions against experiments, one of course
must develop an algorithm to separate the plume events in
time series of the temperature(and possibly of the simulta-
neous transversal velocity) from the turbulent background.
Recently, Chinget al. developed such algorithm.21 Similar
algorithms have been developed by Sreenivasan and
co-workers.22 Based on the splitting of the flow in plume and
background contributions, we can make predictions for the
local heat flux at the sidewalls(which is plume dominated)
and the local heat flux in the center(which is turbulent back-
ground dominated).

The second issue we want to address in this paper are the
temperature and the velocityfluctuations(Sec. IV), extend-
ing our considerations of Sec. V of Ref. 4. In our unifying
theory13–15 we have expressed the kinetic and the thermal
dissipation rates in terms of large scale quantities character-
izing the energy input rates. However, the dissipation rates
are also connected with the small scale local fluctuations,
relevant for the energy dissipation or “output” rate. We will
use the results from our unifying theory to make predictions
how the fluctuations should depend on both Ra and Pr. It will
turn out to be useful and necessary to distinguish between
the thermal background fluctuationsubg8 and the thermal fluc-
tuations caused by plumesupl8 , similarly as done by Wunsch
and Kersten.23 The total thermal fluctuationsu8 are described
by the root mean square of the sum of both,

su8d2 = subg8 d2 + supl8 d2. s2d

Depending on where in the cell the fluctuations are mea-
sured, they will be either dominated by the plume fluctua-
tions or by the background fluctuations. The photographs and
movies of the Xia and Tong groups(see, e.g., Ref. 24, in
particular, Fig. 2 of that paper) suggest that the sidewalls are
plume dominated, and the center is background dominated,
potentially leading to different scaling behaviors. Indeed,
that fluctuations can scale differently at different locations in
the cell has been found by Daya and Ecke.25,26 Most Ra and
Pr number dependences for the temperature and velocity
fluctuations found in those papers will turn out to be consis-
tent with our predictions. However, the Pr dependence ofu8
found in Ref. 26 is definitely stronger than what we will
obtain within our theory. We cannot resolve this discrepancy.
So we present our theoretical prediction and suggest to re-
measureu8sPrd in a larger Pr range and at different locations
in the cell.

Section V contains a summary of the paper and an ex-
tended list of suggestions for measurements, which seem
suitable to verify or falsify our theoretical framework for the
understanding of the heat fluxes and the fluctuations in tur-
bulent thermal convection.

The main feature of our reconsideration of the global
transport properties and of the local fluctuations is that the
role of thermal plumes has been stressed more than we did
before. Thermal plumes have long been known to occur in
thermal convection. Their life-cycle had been visualized by
Zocchi et al.27 and they played a prominent role in the Chi-

cago thermal convection theory.28 We had viewed it as a
strong point of our theory that no statement on the plumes
was necessary, but perhaps after all one has to realize that
plumes play a really important role for both the heat transfer
and the fluctuations.

II. REVISITING OUR UNIFYING THEORY OF THERMAL
CONVECTION

A. Decomposition of dissipation rates

As stated already in the Introduction, the main idea is to
split the kinetic dissipation rate into its boundary and bulk
contributions, whereas the thermal dissipation rate is parti-
tioned into the turbulent background and plume contribu-
tions,

eu =
n3

L4sNu − 1dRaPr−2 = eu,BL + eu,bulk, s3d

eu = k
D2

L2 Nu = eu,pl + eu,bg. s4d

The first equality in each row represents an exact relation
which can be obtained from the Boussinesq equations by
integrating the respective dissipation rate over the whole vol-
ume of the cell, employing the respective boundary condi-
tions (cf., e.g., Ref. 3). The relations of course only hold in
the limit of ideal boundary conditions.

B. Kinetic dissipation rate

The kinetic dissipation rates are modeled just as in Refs.
13–15, namely, as

eu,BL , n
U2

lu
2

lu

L
s5d

and

eu,bulk , U3/L, s6d

respectively. HereU is the large scale wind velocity(defin-
ing Re=UL /n), and lu is the kinetic BL width both at the
plates and at the sidewalls. We consider the BL as of
Blasius–Prandtl type, as long as there is no transition to tur-
bulence in the BL. Thenlu,L /ÎRe, cf. Refs. 29 and 30 and
Sec. II D 1. For the kinetic bulk dissipation it is argued that it
should equal the large scale input, which is caused by the
large scale wind. That wind of course has its origin in the
heating, but by self-consistently solving Eqs.(3) and(4) this
is automatically considered, just as explained in Refs. 13 and
14 in detail. Recently it has been shown31 that in fact it is the
thermal plumes which initiate the wind.

C. Plumes as detached thermal BL

We now model the two contributions to the thermal dis-
sipation rates in the decomposition(4). Consider first the
thermal dissipation rate due to the smooth parts of the ther-
mal BL and the plumes(detached thermal BL). For small
degree of convective turbulence this is the more relevant
contribution. Our ansatz is
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eu,pl , k
D2

lu
2

lu

L
Npl

sheet. s7d

Here we have assumed that the smooth parts of the thermal
BL and the plumes have the typical temperatureD and that
the typical scale of changes is the thermal boundary layer
width lu.

The factorlu /L in Eq. (7) is a geometric factor, repre-
senting the volume ratio of the thermal BL or the detached
thermal BL(plumes) to the total volume. It reflects the idea
that the characteristic width of a plume scales in the same
way as the thermal boundary layer does. For the thermal BL
this seems obvious. For the detached thermal BL(plumes) it
implies that a lateral extension of length,L has been as-
sumed, i.e., that therelevantstructures for the thermal dissi-
pation are mainlysheet-likerather than mushroom-like, at
least initially, when they detach from the thermal BL. Later,
they may decay to mushroom-like structures, whose number
then is of orderL /lu. Indeed, sheet-like structures have been
observed in various experiments and simulations.18,19,27

Originially mushroom-like structure(as also seen in experi-
ments and simulations19,27,31,32) may occur, too, but for them
the corresponding geometric factor would beslu /Ld2, i.e., of
higher order(in lu /L) correction as compared to the two-
dimensional sheet-like structures. Therefore, they are less
relevant for the thermal dissipation caused by the plumes. In
Sec. III A we will give a further argument that the sheet-like
structures are the relevant ones for the thermal dissipation(7)
and in Sec. II G we offer a physical mechanism for the
evolvement of the sheets out of the thermal BLs.

Finally, the last factorNpl
sheet in Eq. (7) represents the

average number of sheet-like plumes being around. Note that
upper and lower thermal BL are included in this number as
two pronounced sheets.Npl

sheet is expressed and calculated
from the plume shedding frequencyfshed and the average
plume lifetimetpl,

Npl
sheet, fshedtpl. s8d

The plume lifetimetpl, in which it looses its temperature
contrast by thermal diffusivity, is determined by the thick-
nesslu of the (detached) boundary layer,

tpl , lu
2 /k. s9d

Here we have assumed that the main mechanism for plume
destruction is thermal diffusion. However, for very large
Prandtl and Reynolds numbers turbulent mixing33 may be-
come the dominant process.

As seen from the above, the thermal BL widthlu plays a
central role in the theory. In our previous publications13–15

we used scaling arguments to derive this thickness. In the
following section we will employ more rigorous arguments,
based on similarity transformations of the underlying thermal
BL equation, leading to the same result as before, and being
consistent with the results in textbooks on boundary layer
theory, see e.g., chapter 9 of Schlichting’s textbook Ref. 29
or Ref. 34.

The plume shedding mechanism and the shedding fre-
quencyfshedwill be discussed in Sec. II G, together with the
resulting average plume numberNpl

sheet.

D. BL thicknesses

1. Kinetic BL thickness lu

We recollect Prandtl’s line of arguments29,30,35 and his
equation for the flow in the BL

ux]xux + uz]zux = n]z
2ux. s10d

We rescale with the typical velocity scaleU and with the cell
heightL, but differently inx direction(longitudinal) and inz
direction (transversal),

x̃ = x/L, ũx = ux/U, s11d

z̃= ÎRez/L, ũz = ÎReuz /U, s12d

in order to achieve the parameter independent form

ũx]x̃ũx + ũz]z̃ũx = ]z̃
2ũx. s13d

Neither this equation, nor the accompanying incompressibil-
ity equation]x̃ũx+]z̃ũz=0, nor the boundary conditions de-
pend on the viscosity or on Re=UL /n explicitly. Therefore
also the solution to this equation cannot depend on Re and is
thus universal. When Re is changed, the flow pattern under-
goes a similarity transformation according to(11) for the
longitudinal quantities and according to(12) for the transver-
sal quantities. In particular, the widthlu of the kinetic BL
itself scales as

lu , L/Re1/2 s14d

and the typical transversal velocity as

uz , U/Re1/2. s15d

We note that Eq.(13) can be reduced to an ordinary
differential equation(ODE) by introducing the similarity
variable

h = zÎU/2nx = z̃/Î2x̃ s16d

and the stream function

Csx,zd = Î2nxUcshd, s17d

finally leading to29,30,35,36

cc9 + c- = 0 s18d

with the boundary conditionscs0d=c8s0d=0 andc8s`d=1
which can be solved.29,30,36We stress that this reduction to an
ODE is not necessary in order to make the statements(14)
and (15) on the scaling of the kinetic BL thickness and the
transversal velocity.

2. Thermal BL thickness lu

Now simultaneously with Prandtl’s BL equation(10) the
thermal boundary layer equation

ux]xu + uz]zu = k]z
2u s19d

has to be solved. As the buoyancy term contributes only to
the equation foruz, which is not considered here, tempera-
ture is assumed to be passive. There is no room to scale the
velocities differently than done in Sec. II D 1. With

4464 Phys. Fluids, Vol. 16, No. 12, December 2004 S. Grossmann and D. Lohse

Downloaded 10 Mar 2005 to 140.77.241.21. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



ũshd = usx,zd/D s20d

and the similarity ansatz(16) and (17) one obtains

ũ 9 + Prcũ8 = 0, s21d

with cshd determined by Eq.(18). Equation(21) implies that
the structure, thickness, and even the scaling behavior of the
thermal BL depend on Pr, i.e., are nonuniversal. As shown by
Pohlhausen,34,37 Eq. (21) can be solved exactly, giving the
temperature profile in the BL. In the context here only the
scaling of its transversal length scale is relevant, i.e., the
scaling of the thicknesslu of the thermal BL. It scales as34

lu /L , CsPrd/Re1/2Pr1/3. s22d

Here,CsPrd is an infinite alternating series given in Ref. 34.
Correspondingly,

Nu , Re1/2Pr1/3/CsPrd. s23d

Equation(23) holds as the thermal BL thickness is defined
with the temperature gradient directly at the plates,
]zkulA,tsz=0d=−D / s2lud. Indeed, from this definition oflu

and the definition of the Nusselt number

Nu =
1

kDL−1fkuzulA,tszd − k]zkulA,tszdg s24d

one obtains

Nu =
L

2lu

, s25d

becauseuzsz=0d=0.

3. Thermal BL thickness lu for large Pr (upper
regime )

For large Pr@1 the series forCsPrd converges to
CsPrd=1,34 implying

lu , L/sRe1/2Pr1/3d s26d

and

Nu , Re1/2Pr1/3 s27d

in this large Pr regime.
More insight into the physics of this large(so-called up-

per) Pr regime, defined by the conditionlu.lu, is obtained
by the observation that the temperature fieldusx,zd sees a
linear velocity profile

uxsx,zd = Usxd
z

lu
, s28d

0øzølu, and lu given by (14). Plugging this profile into
the thermal BL equation(19), the similarity transformation

h = zS U

lu
D1/3

s9kxd−1/3 s29d

allows one to reduce the thermal BL equation to an ODE,
namely,

ũ 9 + 3h2ũ8 = 0, s30d

with the boundary conditionsũs0d=1 and ũs`d=0. This
ODE can be solved to obtain the explicit temperature profile
in the BL. From the similarity transformation(29) and the
scaling oflu Eq. (14) one immediately gets Eq.(26) as scal-
ing of thermal transversal lengths in this large Pr regime.

4. Thermal BL thickness lu for small Pr (lower
regime )

The small Pr regime(so-called lower) is defined by
lu,lu. Then thez dependence of the longitudinal velocity
can be neglected in the thermal BL,uxsx,zd<Usxd. With
some similarity transformation(as detailed in Ref. 29) this
approximation allows to reduce the thermal BL equation(19)
to the ODE

ũ 9 + 2hũ8 = 0, s31d

with the boundary conditionsũs0d=1 andũs`d=0. It has the

solutionũshd=1−erfshd, giving the explicit temperature pro-
file in the thermal BL. All scaling relations relevant in the
context of this paper can already be seen from the special
caseUsxd<U, where the similarity transformation is particu-
larly simple, namely

h =
z

2
Î U

kx
. s32d

From Eq.(32) [and from its generalization to generalUsxd]
one immediately obtains

lu , L/sRe Prd1/2 s33d

for the scaling of thermal transversal lengths and therefore

Nu , Re1/2 Pr1/2 s34d

in the low Pr regime.
All relations for lu and Nu of this and the preceding

section are analogous to those in Chapter 9 of Schlichting’s
textbook(see Table 9.1 of that book) and are consistent with
our earlier(less rigorous) treatment in Refs. 13–15.

E. Crossover from small to large Pr regime

The essence of the difference between the small Pr re-
gime (lower) and large Pr regime(upper) is that in the lower
regime the relevant velocity scale in the thermal BL is the
large scale velocityU, whereas in the upper regime it is only
Ulu /lu. In Refs. 14 and 15 we have modeled the smooth
transition between both with a transition functionfsxd=s1
+x4d−1/4 of the variablexu=lu/lu. The relevant velocity then
is Ufsxud, both in the lower and in the upper regime, since
f l = fsx→0d=1 and fu= fsx→`d=lu /lu,Pr−1/3. Corre-
spondingly, in the dimensionless equations of the lower re-
gime we have to replace Re by Refsxud,

Re→ Re fslu/lud, s35d

in order to obtain expressions which hold both in the lower
and in the upper regime. Indeed, it is easy to show that the
replacement Re→Relu /lu in the lower regime expressions
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(33) and (34) for the thermal BL thickness and the Nusselt
number, respectively, lead to the corresponding expressions
(26) and (27) in the upper regime.

F. Laminarity and time dependence

The Prandtl equations(10) and (19) are time indepen-
dent and therefore the resulting solutions are understood to
describe laminar flow. However, evidently, high Rayleigh
number thermal convection is time dependent. Therefore one
wonders whether above scaling laws forlu , lu, and Nu still
hold for time-dependent flow. This is the case, provided that
the viscous BL does not break down[which only happens
around a BL thickness based Reynolds number between 320
(Ref. 10) and 420(Ref. 30) and leads to the primed regimes
in our phase diagram, as extensively discussed in Refs.
13–15]. Indeed, temporal changes on the time scaleL /U of

the wind can easily be included by adding] t̃ ũx and ] t̃ ũ,
where t̃= tU /L, without changing the parameter indepen-
dence of(13) or adding additional parameter dependences in
(21). Thus the Re and Pr scaling is not changed.

Let us note that the time dependent BL equations allow
for additional solutions with stronger time dependences than
on the convective scaleL /U. This can be attributed to the
plume detachment and within our model is contained in the
“background” term, which contains these intermittent break-
downs or bursts of the BL, see Sec. III A. The respective
time scale isdt,lu /uz and it is shorter thanL /U (if uz

,U). The corresponding strong increase of]t is compen-
sated by the termuz]z,uz/lu, describing the advective
change ofux with the heightz through detachment. The lon-
gitudinal advectionux]x,U /L here is smaller by a factor
lu /L,Nu−1. Also the viscous term is small in comparison
with the advective termuz]z, i.e., viscosity does not break the
plume detachment:n]z

2/uz]z,n / sUlud,Nu/Re which de-
creases with Ra or(in the primed regimes and in IVl of our
phase diagram) is at most Ra independent.

G. Number of plumes and plume shedding frequency

The number of sheet-like plumesNpl
sheetcan be estimated

as follows: If we take in(7) the left-hand side(lhs) eu,pl

,kD2L−2Nu, we find from Eq. (4) that L−2Nu
,L−1lu

−1Npl
sheet, thus Npl

sheet,slu /LdNu,const, independent
of Ra and Pr. The independenceNpl

sheet,1 on Ra and Pr holds
both in the lower and in the upper regime.

The same result can be obtained through physical rea-
soning. We assume that the thermal BL gets unstable once
the Rayleigh number based on the BL thickness Ralu

=bgDlu
3/ snkd exceeds some critical Rayleigh number for the

onset of convection. Upward convection(or downward con-
vection at the upper plate) of a fluid element in an unstable
layer near Rac leads to the formation of convection rolls.
Here, in the unstable thermal boundary layer it leads to a
motion which continues into the bulk as a detaching part of
the BL, i.e., as a sheet-like plume, which will be advected
away by the large scale wind. The consequence of this plume
separation is that the BL has locally cooled down and must
warm up to the temperature difference of orderD again. This
is achieved through the heat fluxJ=NukD /L. Therefore, the

plume shedding frequency is determined by the heat flux
fshed,J, which has units Km/s. The relevant temperature
and length scales to compensate the dimension Km areD and
lu, respectively. Therefore

fshed,
J

Dlu

,
k

L2 Nu2. s36d

With Eqs. (9) and (8) we immediately obtainNpl
sheet,1, in-

dependent of Ra and Pr. This instability mechanism also may
explain why sheet-like plumes can evolve: They result from
the instability of the convection rolls in the thermal BL.

With Nu,ÎfRePr Eq.(36) also implies

fshed, Uf/L. s37d

Indeed,Uf is the velocity seen at the edge of the thermal BL,
namely, U in the lower regime andUlu /lu in the upper
regime, and therefore Eq.(37) is plausible. We also note that
Eq. (37) seems to be consistent with the experimental
result38,39 for the plume shedding frequency which in fact
had before been theoretically predicted.40 The physical pic-
ture behind this theory is as follows: Hot plumes detach and
are slowly advected by the large scale wind. Once they hit
the upper thermal boundary layer, a fast distortion travels
within the upper boundary layer, initiating a cold plume
which is then slowly advected downwards, where the same
mechanism is repeated.

For statistical stationarity the inverse shedding frequency
fshed
−1 is proportional to the traveling time

ttravel ,
L

Uf
s38d

of (hot) plumes from the bottom to the top. Comparison with
the plume lifetimetpl leads totpl /ttravel,tplfshed,1. This
means that the(hot) plumes do reach the upper side of the
cell without dissolving on their way, a result which is experi-
mentally confirmed through visualizations in glycolsPr
=596d.24

Knowing the scaling of the number of sheet-like plumes
Npl

sheetwe can now discuss the correction due to mushroom-
like plumes in more detail. The thermal dissipation by
mushroom-like plumes should be

eu,pl
mush, k

D2

lu
2Slu

L
D2

Npl
mush. s39d

Comparison with the thermal dissipation Eq.(7) for sheet-
like plumes shows that as long asNpl

mushdoes not grow faster
than Npl

mush,Nu, eu,pl
mush is only a higher order correction to

eu,pl
sheet, which we therefore neglect. IfNpl

mush,Nu, then both
contributions scale the same and again nothing would
change.

H. Thermal dissipation rate due to plumes and
smooth BL contributions

Summarizing all results of the last sections and plugging
them into Eq.(7), one obtains the thermal dissipation rate
due to the plumes and the smooth BL contributions,
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eu,pl , k
D2

L2 Re1/2 Pr1/2 f1/2. s40d

I. Turbulent background

The turbulent background thermal dissipation rateeu,bg

originates from the large scale input, thus

eu,bg ,
UfD2

L
, k

D2

L2 Re Prf . s41d

Note that as in our previous publications we have assumed
that the relevant large scale time scale isL / sUfd, not simply
L /U. In the lower regime withf l =1 this is of course the
same, but in the upper regime withfu=lu /lu these two
scales differ. Our choice is consistent with our result for the
shedding frequency(37).

J. Summary

With Eqs.(40), (41), (5), (6), (3), and(4) we thus arrive
at the very same Eqs.(5) and (6) of Ref. 15 for the kinetic
and thermal dissipation rate balances, respectively, but now
with the refined interpretation that the first term of Eq.(6) (of
Ref. 15) represents the smooth BL as well as the plume con-
tribution (detached boundary layer) to the thermal dissipa-
tion, and the second term describes the turbulent background
contribution. All numbers remain the same, and in particular
the predictions for the global, external quantities Nu(Ra, Pr)
(Fig. 2 of Ref. 14) and Re(Ra, Pr) (Fig. 3 of Ref. 15) and for
the phase diagram(Fig. 2 of Ref. 15).

In the following we briefly summarize the agreements of
our theory with experimental data for Nu(Ra, Pr) and Re(Ra,
Pr). For a more detailed discussion and more references we
refer to our original publications.13–15

The agreements are as follows.

(a) In general, there are no global power laws but only
local scaling exponents.6,9

(b) For fixed Ra and in the low Pr regime the theory
correctly gives a Nu vs Pr effective scaling exponent around
0.14 as found in various experiments and simulations.19,41–43

(c) For large Pr the curve Nu(Pr) saturates and even
slightly decreases.11 Even the absolute numbers very nicely
agree with our predictions made prior to the experiment.

(d) For fixed Pr and Ra up to 1011 the various measure-
ments made for Nu(Ra) can be accounted for within our
theory. For small Pr!1 the effective exponent is close to
0.25,41 for large Pr<1–7 it is around 0.29.3,7,9,10,28,44–46

(e) Beyond Ra=1011 our theory is consistent with the
Oregon measurements on Nu vs Ra,9 not with the Grenoble
data.7,8,47,48However, a transition towards a steeper effective
exponent closer to 1/2 can be explained by the instability of
the kinetic BL to be expected around Ra<1015.15 This insta-
bility, however, should first arise in the Oregon data as those
achive higher Ra.

(f) Once the thermal and kinetic boundary layers are
eliminated in numerical simulations and replaced by periodic
boundary conditions, the ultimate scaling regime with Nu
,Ra1/2 shows up,49 as predicted by our unifying theory.

Note that the numerical simulations of this so-called “homo-
geneous Rayleigh–Bénard turbulence”49,50are also consistent
with the Prandtl number dependence in this ultimate regime
(regime IVl in the phase diagram of Refs. 13–15), namely,
Nu,Ra1/2 Pr1/2 and Re,Ra1/2 Pr−1/2.

(g) The effective Re vs Ra scaling exponent(for fixed
Pr=5.5) is around 0.45.12,39,51,52

(h) The local scaling of Re vs Pr shows two regimes: For
fixed Ra=106 the small-Pr effective exponent is −0.60 and
the large-Pr effective exponent −1.0, see Fig. 3(b) of Ref. 15.
The numerical results obtained two years later for the respec-
tive exponents are −0.607±0.013 and −0.998±0.014.19 In
both theory and numerics the crossover is around Pr<1. The
experimental result by Lamet al.12 is ResPrd,Pr−0.95 for Pr
between 6 and 1400.

The major disagreement of our theory with experiment is
on the thickness of the kinetic BL at the top and bottom
plates which scales aslu/L,Ra−0.16,12,53,54 much weaker
than suggested by the theorylu/L,Ra−0.23. However, the
sidewall scaling of the kinetic BL thickness found in those
papers does agree with theoretical prediction. A possible so-
lution of this problem has been suggested by us in Ref. 4.

III. HEAT FLUX

A. Global heat flux

Hitherto, the core of our argument has been based on the
dissipation rates, and not on the heat flux Eq.(24). From our
point of view this approach is the easier one, as the thermal
dissipation rate is a quantityquadraticin u (or, to be precise,
in ]iu), whereas in Eq.(24) u enters linearly, and statements
on correlations are necessary. However, the thermal dissipa-
tion rateeu is intimately related to the heat flux Nu via the
exact Eq.(4), eu / skD2/L2d=Nu. This is a remarkable rela-
tion, as on the left-hand side we have avolume average,
whereas on the right-hand side we have a flux,averaged over
the cross-sectionof the cell atany arbitrary heightz,

eu

kD2L−2 = Nu =
1

kDL−1fkuzulA,tszd − k]zkulA,tszdg. s42d

The averagek¯lA,tszd is taken over thefull area parallel to
the ground at heightz and over time. Clearly, the turbulent
background and the plume contributions toeu with their
different scaling behaviorseu,bg/ skD2/L2d, f Re Pr and
eu,pl / skD2/L2d, f1/2 Re1/2 Pr1/2 must be present also on the
right-hand side of Eq.(42). This must hold forany heightz,
since the heat current, i.e., the right-hand side(rhs), is inde-
pendent ofz. This, in particular, means that there must be
turbulent background contributions to the heat flux,f Re Pr
already for very smallz in the boundary layer and vice versa
plume contributions,f1/2 Re1/2 Pr1/2 at any heightz. Figure
2 of Ref. 24 suggests that forz<L /2 at least for glycol
sPr<596d the plume contributions are concentrated close to
the sidewall boundaries and the background contributions are
more in the center of the cell. In any case, we know that for
any heightz from the two terms in Eq.(42) there can only be
contributions,f Re Pr and,f1/2 Re1/2 Pr1/2 to the dimen-
sionless heat flux(Nusselt number), but those contributions
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evenmustbe there. Realizing this, it is by the way not sur-
prising that the ratio of the thermal dissipation rate in the
plate boundary layers and the thermal dissipation rate in a
region with z outside the plate boundary layers is constant,
i.e., independent of Ra, as found in Ref. 16: For any plane
with constant z both contributions ,f1/2 Re1/2 Pr1/2 and
,f Re Pr, originating from plumes and background, respec-
tively, must contribute, and always in the same ratio.

This argument supports our earlier ansatz(7) on the di-
mensionality of the plumes relevant for the thermal dissipa-
tion, namely, that they are sheet-like rather than mushroom-
like. Indeed, for very smallz the dimensionality of the
thermal structure is out of question: It is the two-dimensional
thermal BL itself. Due to thez independence of above ratio,
also the relevant thermal structures for largerz must be two-
dimensional, i.e., sheet-like rather than mushroom-like. The
prediction of our theory, therefore, is that at any heightz
sheet-like thermal structures exist(or at least decayed sheet-
like thermal structures).

Let us now have a more detailed look at relation(42) for
various heightsz. For z=0 we had done so already in Sec.
II D 2. The first term on the rhs of Eq.(42) vanishes as
uzsz=0d=0 and the second term givesL / s2lud, resulting in
the known relation(25) between Nu andlu.

For nonzeroz but z still within the boundary layer we
estimate

− k]zkulA,tszP BLd
kDL−1 ,

L

lu

, f1/2 Re1/2 Pr1/2. s43d

This relation not only follows from the estimate, but more
rigorously from relations(34) and(27), under the assumption
that the Prandtl type analysis of chapter II is applicable to at
least the smooth parts of the thermal BL. The same argument
applies to the smooth, plume-like part of the other term
,kuzulA,tszd / skDL−1d, for which we split the area average
k¯lA,tszd into an average over the turbulent background or
intermittent burst regions across the layerA and an average
over the plumes’ and smooth BL parts’ regions,

k¯lA,tszd = k¯lhx,yjPbg,tszd + k¯lhx,yjPpl,tszd. s44d

For example, for the plume and smooth BL contributions we
have to conclude that

kuzulhx,yjPpl,tszP BLd

kDL−1 , f1/2 Re1/2 Pr1/2, s45d

also due to Eqs.(34) and (27). For small degree of turbu-
lence this is the dominant contribution, but for increasing Ra
the thermal BL will more and more often become unstable,
leading to intermittent bursts, which form kind of a turbulent
background. The heat flux associated with these events must
scale as

kuzulhx,yjPbg,tszP BLd

kDL−1 ,
fUD

kDL−1 , f Re Pr. s46d

Note that for the estimate of these turbulent background
bursts we use thelongitudinalvelocity fU felt at the edge of
the thermal BL. We consider this as more appropriate than to
use the transversal velocity(15), as it originates from the

Prandtl type similarity analysis which is not applicable for
the turbulent bursts, but only for the smooth parts of the BL.

For heights in the middle of the cell(say, z<L /2) the
second term,]zkulA,tszd in Eq. (42) does not contribute as
the mean temperature in the center is about constant. The
first term ,kuzulA,tszd again must have two contributions,
one corresponding to the plumes with the smooth BL type
scaling

kuzulhx,yjPpl,tsz< L/2d

kDL−1 , f1/2 Re1/2 Pr1/2, s47d

and one corresponding to the turbulent background

kuzulhx,yjPbg,tsz< L/2d

kDL−1 ,
fUD

kDL−1 , f Re Pr. s48d

One expects that thehx,yjPpl are preferrably near the side-
wall, while hx,yjPbg will predominantly be in the center
region.

B. Local heat fluxes

Global heat flux measurements can of course only give
the sum of plume and turbulent background contributions.
However, in local simultaneous measurements of the vertical
velocity and the temperature it may be possible to disen-
tangle plume and turbulent background contributions. In-
deed, in a recent paper Chinget al.21 offer an algorithm to
detect plumes in time series of the vertical velocity and the
temperature. If the heat transfer associated with the plumes
and with the background can be calculated from that algo-
rithm, it will be possible to check the predictions(47) and
(48) on the respective scaling behavior.

For the time being we must make use of the experimen-
tal observation24 that forz<L /2 and close to the sidewall the
flow is dominated by plumes, whereas in the center the tur-
bulent background fluctuations dominate the flow, and
plumes only occur occasionally. Therefore we predict that
the local heat flux close to the wall should scale more like
(47), whereas the local heat flux in the center should scale
more like (48),

Nussidewalld , f1/2 Re1/2 Pr1/2, s49d

Nuscenterd , f Re Pr. s50d

The two scaling relations are shown in Figs. 1 and 2. For
Nu(sidewall) the local slope in the low Ra regime is around
0.22 for all Pr. This value is very similar to what has been
found by Tong and collaborators for the measurements of the
local Nusselt number close to the sidewall, in experiments in
water with Ra up to 1010 (Tong, private communication). In
the center of the cell Tong and collaborators found a much
steeper local slope in that Ra regime. Our theoretical result
of a slope around 0.44 for Nu(center) and Pr=5.5 is clearly
consistent with their measurement. Note that for small Ra the
absolute values of Nu(center) are of course much smaller
than those for Nu(sidewall), as in that small Ra regime most
of the heat is transported by the large scale wind.24 Only for
much larger Ra the heat flux through the center takes over.
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The experiments by Tong and collaborators suggest that this
would be the case at Ra=1014.

In the high Ra regime the local scaling exponents of
Nu(local) vs Ra are around 0.17 for Nu(sidewall) and 0.34
for Nu(center), respectively. For fixed Rayleigh numbers be-
tween 108 and 1011 the local slopes of Nu(local) as function
of Pr are as follows: For Nu(sidewall) around 0.22 for small
Pr and around −0.04 for large Pr and for Nu(center) around
0.45 for small Pr and around −0.05 for large Pr, see Fig. 2.
To our knowledge none of these exponents has been mea-
sured up to now. Note again that these values only hold once

one succeeds to fully separate the heat flux due to the plumes
and the heat flux due to the turbulent background.

That the splitting of the cell into sidewall and center
regions is not unreasonable is also supported by the recent
results of Xia and collaborators55 who found that the rotation
frequencies of the inner core and of the outer large scale
wind show different scaling with Ra, namely,,kL−2Ra0.4

and,kL−2Ra0.5, respectively.

C. Temperature-velocity correlations in the plume
dominated regime

There is an interesting corollary from Eq.(47) for the
heat transport in the plume dominated regime. The relation
suggests that in that regime the correlation between tempera-
ture and vertical velocity scales as

kuzulhx,yjPpl,t

kuzlhx,yjPpl,tkulhx,yjPpl,t
Sz<

L

2
D ,

kDL−1Îf Re Pr

UD
,

f

Nu
,

s51d

i.e., like 1/Nu in the lower regime and like Pr−1/3/Nu in the
upper regime. Here we have assumed that at midheight the
typical upwards plume velocitykuzlhx,yjPpl,t,U and Nu
,ÎfRePr. Physically, indeed the result(51) makes sense as
one expects that the correlation between temperature and up-
wards velocity gets weaker with increasing Nu, due to the
increasing degree of turbulence. The prediction(51) for the
plume dominated regime is open to experimental validation.
One could, e.g., measure the temperature-velocity correlation
close to the sidewalls where the plume density is particularly
high.24

IV. FLUCTUATIONS

A. Temperature fluctuations

The results from our unifying scaling theory foreu and
thus Nu can also be used to make predictions on the scaling
of the fluctuations. The total thermal dissipation rate Eq.(1)
has two contributions with different Re and Pr scaling,
namely, turbulent background and plumes, Eqs.(41) and
(40). The same should hold for the temperature fluctuations
(2). Both the(square of the) temperature fluctuations and the
thermal dissipation rates areadditive. The background ther-
mal dissipation rate corresponds to the background thermal
fluctuationsubg8 ,

eu,bg , k
D2

L2 Re Prf , k
subg8 d2

hu
2 , s52d

where hu=k3/4/eu
1/4=Pr−3/4h is the inner thermal length

scale, which scales ashu,LPr−3/4Re−3/4, due toeu,U3/L.
Here,h,LRe−3/4 is the Kolmogorov length. From Eq.(52)
one immediately obtains

ubg8

D
, Pr−1/4 Re−1/4f1/2. s53d

For the plume thermal fluctuationsupl8 it must hold

FIG. 1. Nu(sidewall) (solid black lines) and Nu(center) (gray lines) as func-
tions of Ra for Pr=10−1, 100, and 101, bottom to top. The local slopes for
Nu(sidewall) typically vary between 0.21 and 0.17 for Pr=10 and 0.23 and
0.17 for Pr=10−1. The local slopes for Nu(center) typically vary between
0.43 and 0.34 for Pr=10 and 0.46 and 0.34 for Pr=10−1.

FIG. 2. Nu(sidewall) (solid black lines) and Nu(center) (gray lines) as func-
tions of Pr for Ra=108, 109, 1010, and 1011, bottom to top. For Nu(sidewall)
the local slopes in the small Pr regime are around 0.22 and those in the large
Pr regime around −0.04. For Nu(center) the local slopes in the small Pr
regime are around 0.45 and those in the large Pr regime around −0.05.
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eu,pl , k
D2

L2 Re1/2 Pr1/2f1/2 , k
supl8 d2

lu
2 . s54d

Here we have usedlu as the typical length scale of the
plumes. UsingL /lu, f1/2Re1/2Pr1/2 as above for the(in-
verse) thickness of the detached thermal boundary layer we
obtain

upl8

D
, f−1/4 Re−1/4 Pr−1/4, s55d

which for small Pr, wherelu,lu and thusf =1, interestingly
has the same scaling as for the background thermal fluctua-
tions. In general, the thermal background and plume fluctua-
tions add according to Eq.(2). The relative weight of the
background and the plumes may vary depending on the exact
position in the cell: Close to the sidewalls the plumes may
dominate; in the center the background may dominate.

In Figs. 3 and 4 we show the temperature fluctuations as
function of Ra and Pr. These results are based on Re(Ra, Pr)
and Nu(Ra, Pr) as produced by our unifying theory.14,15The
resulting dependence ofu8 /D on Ra (Fig. 3) with a local
slope between −0.11 and −0.16 seems to be consistent with
the experimental results. For example, Daya and Ecke25,26

measureu8 /D,Ra−0.10±0.02 in water; Niemelaet al.9 get
u8 /D,Ra−0.145 in helium gas; Castainget al.28 get u8 /D
,Ra−1/7, also in helium gas.

The resulting dependence ofu8 /D on Pr(Fig. 4) reveals
local scaling exponents of around −0.11 for bothubg8 /D and
upl8 /D in the low Pr regime. In the large Pr regime we have a
local slope of about +0.01 forupl8 /D and of about −0.24 for
ubg8 /D. All these dependences are much weaker than the ex-
ponent −0.38±0.04 which had been found in the experiments
by Daya and Ecke26 for (large) Pr between 2 and 12. We
have no explanation for this discrepancy. It will remain the
only one with experiment. In view of this discrepancy and in

view of the large difference in the local scaling exponents for
upl8 /D and for ubg8 /D we consider new measurements of the
Pr dependence of the temperature fluctuations at various lo-
cations in the cell as worthwhile.

B. Velocity fluctuations

The (bulk) velocity fluctuationsu8 are estimated within
the same spirit and as in Ref. 15, namely,

eu,bulk ,
U3

L
, n

su8d2

h2 , s56d

resulting in

u8

U
=

Re8

Re
, Re−1/4. s57d

The dependence of Re8 /Re on Ra and Pr is shown in Figs. 5
and 6. The local exponent of Re8 /Re vs Ra is −0.11 for all
shown Pr numbers. The local exponent of Re8 /Re vs Pr is
between 0.17 and 0.21 for the Ra shown in Fig. 6, with a
tendency to be slightly larger in the large Pr regime. From
Figs. 4(a) and 3(b) of Ref. 15 we extract a local scaling law
Re,Ra0.45Pr−1.0 for Ra around 109–1010 and Pr around 2–12
where the experiments by Daya and Ecke took place.26 Using
these values we obtain from their given local scaling expo-
nents for Re8 the following: Re8 /Re,RalPrv with l be-
tween 0.05 and 0.01 andv=0.20±0.03. While the Pr expo-
nent seems to be in very nice agreement, the Ra exponentl
even seems to have a different sign than in experiment. How-
ever, already in chapter 5 of Ref. 4 we had mentioned that in
fact it is consistent with the experimental results in Refs. 12,
25, and 26. Moreover, other researchers(Ref. 56) had given
l values between −0.02 and −0.11, though for a square cell.
Clearly, more experimental data are needed also for the rela-
tive velocity fluctuations.

FIG. 3. ubg8 /D (solid black lines) andupl8 /D (gray lines) as functions of Ra
for Pr=10−1, 100, and 101, top to bottom. Forubg8 /D the local slopes typi-
cally vary between −0.13 and −0.16 for Pr=10 and −0.11 and −0.16 for
Pr=10−1. For upl8 /D the local slopes typically vary between −0.11 and −0.09
for all given Pr.

FIG. 4. ubg8 /D (solid black lines) and upl8 /D (gray lines) as functions of Pr
for Ra=108, 109, 1010, and 1011, top to bottom. Forubg8 /D the local slope in
the large Pr regime is about −0.24, that one in the small Pr regime about
−0.11. Forupl8 /D the local slope in the small Pr regime is also about −0.11,
that one in the large Pr regime about 0.01.
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V. CONCLUSIONS AND SUGGESTION FOR
MEASUREMENTS

The central idea of this paper was to split the thermal
dissipation rate and the thermal fluctuations into a back-
ground contribution and a plume contribution. Though from
flow visualization it is easy to visually identify “plumes,” it
is by far nontrivial to disentangle temperature signals into
plume and nonplume contributions, though first attempts
have already been made.19,21 What may be easier is to iden-
tify “large plumes.” For those clearly the predicted scaling
eu,pl / skD2/L2d,Re1/2Pr1/2f1/2 should hold, whereas the tur-
bulent background, which should scale likeeu,bg/ skD2/L2d
,RePrf, may be contaminated by the contributions from
“small plumes.” Pattern recognition methods used for hot-

wire signals in bubbly flow57 in order to identify bubbles
touching the hot wire may be useful for further plume iden-
tifications.

We close the paper with a list of detailed predictions
following from our theory, which should be checked against
experimental and numerical observations.

(i) The area averaged thermal dissipation rate should be
the same in any plane(of some small width) with given fixed
distancez from the ground, just as the total area average
Nuszd, which should be independent of heightz, due to heat
flux conservation.

(ii ) A consequence of this statement is that at any height
z sheet-like(i.e., two-dimensional) thermal structures should
exist (or at least decayed sheet-like thermal structures) and
dominate the thermal dissipation of the plume part, just as
assumed in our ansatz(7). Three-dimensional flow visualiza-
tions will be necessary to check this prediction.

(iii ) The number of sheet-like plumesNpl
sheet is constant,

independent of Ra and Pr. In case of mushroom-like plumes
their numberNpl

mush does not increase stronger than,Nu. If
they developed from the decay of sheet-like plumes, their
number would scale as,L /lu,Nu, satisfying this upper
threshold.

(iv) For large Pr, when the flow is organized in a con-
vection role, the thermal dissipation rate should peak close to
the sidewalls as there it is dominated by the plumes.

(v) The plume-dominated part of the thermal dissipation
should scale aseu,pl / skD2/L2d,sRePrfd1/2, with f ,1 in the
lower regime andf ,Pr−1/3 in the upper regime.

(vi) The background-dominated part of the thermal dis-
sipation should scale aseu,pl / skD2/L2d,RePrf.

(vii ) The thermal fluctuations should scale according to
Figs. 3 and 4.

(viii ) In particular, the Pr dependence of the temperature
fluctuations close to the sidewall, where the plumes domi-
nate, should beweakerthan in the center of the flow.

(ix) The velocity fluctuations should scale according to
Figs. 5 and 6.

(x) In the plume-dominated regime the normalized cor-
relation kuzul / skuzlkuld scales like,1/Nu in the lower re-
gime and like,Pr−1/3/Nu in the upper regime.

(xi) Perhaps the most important and interesting predic-
tion is that thelocal heat flux should show a stronger Ra
dependence in the turbulent background fluctuation domi-
nated center of the cell than close to the plume-dominated
sidewalls. If one succeeds in a full separation of the heat flux
into a contribution due to plumes and one due to the turbu-
lent background fluctuations, the repective scaling should be
as shown in Figs. 1 and 2.
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