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We study the thickness h∞ of a liquid film (dynamic viscosity µ) when deposited on a
rigid surface by an elastic sheet (length L, bending stiffness B) moving at the relative
velocity V . We first show experimentally that :

h∞ ≈ 0.065L

(
µV L2

B

)3/4

Theoretically, we approach this law with an extension of the Landau-Levich-Derjaguin
problem.

1. Introduction
The deposition of a constant thickness liquid film (dynamic viscosity µ, density ρ, surface
tension σ) on a solid surface (coating) can be achieved by removing the solid from a liquid
bath at a constant velocity V [Kistler and Schweizer (1997), Quéré (1999)].
When the solid reduces to a flat plate [figure 1-(a)], the thickness h∞ of the extracted
film has first been studied experimentally [Goucher and Ward (1922), Morey (1940)], and
has led to the LLD theory [Landau and Levich (1942), Derjaguin (1943)] which gives (see
section 4.2):

h∞ = 0, 94.a.Ca2/3, (1.1)

where a ≡
√

σ/ρg is the capillary length and Ca ≡ µV/σ the capillary number. The
above expression holds in the low capillary limit Ca � 1, where the pressure at the
interface mainly depends on surface tension. To reach the law (1.1), one must consider
the role of the liquid meniscus which imposes, via curvature effects, a constant film
thickness at the exit of the bath. In this sense, one can say that the meniscus acts as a
"liquid wiper".
The problem we address is to find the law for h∞, when the capillary wiper is replaced
by an elastic sheet wiper [figure 1-(b)].
The experimental set-up is presented in section 2, the results in section 3 and the model
in section 4.
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Figure 1. Plate coatings (a) through a capillary meniscus (b) through an elastic sheet (c)
conventions used to describe the coating problem.

thickness density bending stiffness Young modulus L
hs ρs B E ≡ 12

`
1− ν2

´
B/h3

s

µm kg.m−3 kg.m2.s−2 GPa cm

55 1280 57.10−6 3.7 4.3
75 1344 162.10−6 4.0 5.4
100 1387 354.10−6 3.7 6.3
150 1337 795.10−6 2.5 7.3
180 1338 1232.10−6 2.2 8.0
490 906 10 041.10−6 0.9 13.1

Table 1. Physical properties of the different mylar sheets.

2. Experimental set-up and protocol
The experimental set-up is presented on figure 2-(a): the elastic sheet of length L and
width b (1) is clamped on a support (2) at a distance y0 from the solid support to be
coated (3).
The physical properties of the mylar sheets we have used are reported on table 1. Apart
from the sheet thickness hs and density ρs, we present on table 1 the measured values
of the bending stiffness per unit width B and the deduced value of the Young modulus
E ≡ 12

(
1− ν2

)
B/h3

s. In this expression, the Poisson ratio is taken constant ν = 1/3.
The last column presents the value of the characteristic length L ≡ [B/(ρs.hs.g)]1/3

under which gravity does not affect the equilibrium shape of the sheet. The whole study
is conducted in the limit L/L < 1, where gravity can be neglected to describe the shape
of the sheet of length L.
The liquid (silicone oil) is chosen to wet both the elastic sheet and the solid support. It is
initially deposited with a micropipet between the sheet and the solid surface as presented
on figure 2-(b). The deposited volume Ω is of the order of 1000 µl and we always manage
to keep it to a value much larger than the coating volume. In this limit, there is no
influence of Ω on the deposited film thickness as will be shown in section 3. The physical
properties of the silicone oils used (S.O.) are presented on table 2.
Once the liquid is deposited, the solid support is moved at a constant velocity in the
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Liquid ρ µ σ a
kg m−3 kg m−1 s−1 N m−1 m

S.O. V100 952 0.1 0,0225 1,6 10−3

S.O. V1000 965 1 0,0225 1,5 10−3

Table 2. Physical properties of the different Newtonian liquids used (at 25◦C).
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Figure 2. Experimental set-up: (a) general view showing the elastic plate (1), its clamping
support (2) and the coated solid plate (3). (b) close view on the elastic plate and the liquid
reservoir of volume Ω.
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Figure 3. Shape of the elastic sheet obtained with L = 28.5 mm, hs = 100 µm and : (a)
y0/L = 1, θL = 0◦ (b) y0/L = 0.8, θL = 52◦ (c) y0/L = 0.6, θL = 75◦ (d) y0/L = 0.44, θL = 90◦

(e) y0/L = 0.3, θL = 90◦.

direction of positive x. The velocity is controlled by a step motor (Cool Muscle, CM1
series) and can be varied from 100 µm/s to 14 cm/s.
After the coating of the whole surface, the solid is weighted and we deduce from the
difference of mass before and after deposition, the value of the mean thickness h∞.

3. Experimental results
3.1. Influence of the reduced distance y0/L.

The shape of the elastic sheet is presented on figure 3 for different values of the reduced
solid surface distance y0/L. We observe on this figure that the angle at the end of the
sheet θL increases from 0 at y0/L = 1 to π/2 at y0/L = 0.44. For smaller values of the
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Figure 4. Experimental results : (a) Influence of the reduced distance y0/L on the film thick-
ness h∞ obtained with V100, V = 28.8 mm/s, b = 38 mm, L = 28.5 mm, hs = 180 µm.
(b) Influence of the reservoir volume Ω obtained with V100, V = 12 mm/s, b = 3.8 cm,
y0/L = 0.44, L = 45.5 mm and hs = 100 µm (c) Influence of the sheet width b obtained
with V100, V = 28.8 mm/s, y0/L = 0.44, L = 35.5 mm, hs = 100 µm.

reduced distance, this angle remains equal to π/2 and the horizontal fraction of the sheet
length increases, as well as its initial curvature.
The evolution of the film thickness h∞ with the reduced distance y0/L is presented on
figure 4-(a). This evolution presents a maximum for y0/L ≈ 0.4− 0.45, that is when the
sheet gets in contact with the solid with a π/2 contact angle θL [see figure 3-(d)] and with
almost a zero contact surface . The whole study is conducted in the limit y0/L = 0.44.

3.2. Influence of the reservoir volume Ω.
The influence of the volume of the reservoir Ω [figure 2-(b)] on the film thickness h∞
is presented on figure 4-(b). These measurements have been performed with V100, V =
12 mm/s, b = 38 mm, y0 = 0.44, L = 45.5 mm and hs = 100 µm.
We observe on this figure that within the experimental error on the measure of h∞ (of
the order of ±10%) the film thickness is independent of the volume of the reservoir.

3.3. Influence of the sheet width b.
The evolution of the film thickness h∞ with the sheet width b is presented on figure
4-(c): Within the experimental error on the measurement of h∞ (10%) the film thickness
is independent of the width b.

3.4. Influence of the velocity V and viscosity µ.
The evolution of the film thickness h∞ with the velocity is presented on figure 5-(a): the
thickness of the coating increases with V as a power law h∞ ∼ V α with α ≈ 3/4. We
also observe on this figure that the thickness increases with the viscosity of the liquid:
using a silicone oil ten times more viscous (V1000 instead of V100) leads to a thickness
ten times larger.

3.5. Influence of the sheet length L.
The evolution of the film thickness h∞ with the sheet length L is presented on figure 5-(b):
in these experiments, all the parameters are kept constant (in particular the ratio y0/L)
except the length L. We observe a strong power law dependency of the film thickness
h∞ ∼ Lβ with β ≈ 5/2.
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Figure 5. Experimental results : (a) Influence of the velocity V obtained with V100 (�)
and V1000 (�) using the elastic sheet defined by b = 38 mm, y0/L = 0.44, L = 35.5 mm
and hs = 100 µm. (b) Influence of the sheet length L obtained with V100, V = 28.8 mm/s,
b = 38 mm, y0/L = 0.44, and hs = 100 µm (c) Influence of the sheet bending stiffness B
obtained with V100, V = 28.8 mm/s, b = 38 mm, y0/L = 0.44, L = 55.5 mm.

3.6. Influence of the sheet bending stiffness B.
The influence of the sheet bending stiffness B is presented on figure 5-(c): again, all the
parameters are kept constant except B which is varied using the different mylar sheets
presented on table 1. We observe on this figure that the coating thickness h∞ decreases
with B following a power law h∞ ∼ Bγ with γ ≈ −3/4.

4. Model
In this section, we first present some scaling arguments intended to capture the physical
skeleton which sustains the delicate LLD theory [Landau and Levich (1942), Derjaguin
(1943)]. This theory is then more deeply presented and in a second step adapted to the
coating by an elastic sheet.

4.1. Some scaling arguments
The idea developed by Landau, Levich and Derjaguin to reach the expression of h∞ in
the case of plate coating [figure 1-(a)] is to consider the liquid motion in a region located
in between the liquid meniscus (where the fluid is mainly at rest) and the film region
(where the liquid mainly move at the velocity of the wall). In this intermediate region (of
vertical extension λ), the motion of the fluid must satisfy (in the low Reynolds number
limit) the Stokes equation which can be dimensionally written :

µ
V

h2
∞
∼ σ

h∞
λ3

(4.1)

where σ h∞/λ3 represents the gradient of the capillary pressure. This equation states
that the liquid is entrained by viscosity and retained by surface tension. The value of
the thickness h∞ results from this equilibrium. To evaluate the gradient of the capillary
pressure, the idea is that the value of the curvature changes from 0 in the film region to
1/a in the meniscus region over the distance λ: h∞/λ3 ∼ 1/(λ a). This matching of the
two zones leads to the scaling of the film thickness:

h∞ ∼ a Ca2/3 (4.2)
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If one transposes this approach to the problem of the elastic meniscus, the first modifi-
cation lies in the expression of the pressure gradient:

µ
V

h2
∞
∼ B

h∞
λ5

(4.3)

The second difference lies in the matching which is done here on the force (instead of the
pressure) and leads to the evaluation of λ : h∞/λ3 ∼ 1/L2. As for the LLD problem, the
Stokes equation and the matching condition with the unperturbed meniscus provides the
scaling for the film thickness:

h∞ ∼ L Ce3/4 where Ce ≡ µV L2

B
(4.4)

4.2. The LLD theory.
The problem of dragging a liquid by an upward moving vertical plate [figure 1-(a)] is
discussed using the conventions presented in figure 1-(c).
We describe the flow in the "small slope region" (hx ≡ dh/dx � 1), where we assume
that the velocity is mainly aligned with x and mainly depends on y (U ≈ u(y)ex). We
don’t know exactly where this region is but we are sure that it exists by continuity
between the zero slope region (h = h∞) located at x = +∞ and the infinite slope region
located at the junction with the bath x = −∞.
In this small slope region the conservation of mass imposes

h 〈u〉 = h∞ 〈u〉∞ (4.5)

where 〈u〉 is the mean velocity defined by h 〈u〉 =
∫ h

0
u(y)dy.

In the limit of small Reynolds number Re ≈ V h∞/ν the steady motion of the Newtonian
liquid is described by the Stokes equation:

µ∆U = gradp− ρg (4.6)

Along the y direction, this equation reduces to ∂p/∂y = 0 which states that the pressure
at any x location can be deduced from its value at the interface [y = h(x)] where the
continuity of stresses imposes:

−p.n +
(
τ .n

)
= −p0.n + σ.C.n. (4.7)

Here p0 is the pressure in the surrounding gas, n the outward normal vector, τ ≡
µ

(
grad U +T grad U

)
the fluid stress tensor and C the curvature of the interface which

imposes the Laplace pressure jump. In the limit of small capillary number Ca ≡ µV/σ �
1, the pressure jump at the interface is mainly related to the capillary effect and the above
equation (4.7) reduces to p = p0 − σhxx along the normal n and to ∂u/∂y = 0 along the
tangential direction. This expression of the pressure in the liquid enables the integration
of the equation of motion (4.6) along the x direction, which leads to:

h 〈u〉 = hV − h3

3ν

(
g − σ

ρ
hxxx

)
(4.8)

Using h∞ to scale the film thickness (h̄ ≡ h/h∞) and Lx ≡ h∞/ (3Ca)1/3 to scale the
lengths along the x direction (x̄ ≡ x/Lx), the above equation (4.8) becomes, using (4.5):

h̄3h̄x̄x̄x̄ = 1− h̄ +
(

h∞
a

)2 1
3Ca

(
h̄3 − 1

)
(4.9)

The last term in equation (4.9) represents the effect of gravity. Since we will show that
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Figure 6. (a) visualisation on the unit circle of the three solutions of the equation α3
i = −1. (b)

evolution of the reduced thickness h̄(x̄) obtained through the numerical integration of equation
(4.10) with different values of the constant A: A = 0.1 (�), A = 1 (�) and A = 10 (•).
(c) evolution of the reduced curvature h̄x̄x̄(x̄) obtained through the numerical integration of
equation (4.10) with different values of the constant A: A = 0.1 (�), A = 1 (�) and A = 10 (•).

h∞/a ∼ Ca2/3, this term is of order Ca1/3 � 1 compared to the entrainment term
and the capillary term. The motion of the liquid is thus governed by the parameter free
equation:

d

dx̄
h̄x̄x̄ =

1− h̄

h̄3
(4.10)

which must be integrated with the limit condition h̄(x̄ = +∞) = 1. In this quasi-constant
thickness region we seek an asymptotic solution under the form h̄(x̄) = 1+ ε(x̄). Accord-
ing to equation (4.10), the function ε(x̄) must satisfy the linear equation εx̄x̄x̄ = −ε.
We deduce that ε(x̄) = Aie

αix̄, where α3
i = −1. The three solutions of this equation

are presented on figure 6-(a). Two of them (α1 and α3) have positive real part and
thus diverge in x̄ = +∞. The vanishing condition impose ε(x̄) = A2e

α2x̄ = Ae−x̄. This
asymptotic function is used to impose the three initial conditions which are needed to
integrate equation (4.10). The results of the numerical integration of this equation are
presented on figures 6-(b) for h̄(x̄) and -(c) for h̄x̄x̄(x̄) using three different values of the
constant A (0.1, 1 and 10). We observe on figure 6-(b) that the film thickness increases
when x̄ → −∞. As expected, this increase occurs sooner with high values of A. This free
parameter A is related to the fuzzy location of the small slope region. It does not change
the main characteristic of equation (4.10) which states that he curvature h̄x̄x̄ becomes
constant when h̄ goes to infinity. Figure 6-(c) shows that this constant is independant of
A and equals 0.642.

In the limit x̄ → −∞, the small slope region much connect the meniscus region. The
above property of the Stokes equation suggests that the constant curvature obtained in
this limit must be equal to the curvature of the meniscus in the region of small slope, that
is at the contact with the wall. This static meniscus curvature is known since the work
of Laplace [Clanet and Quéré (2002)] and is equal to

√
2/a at the wall. The matching of

curvatures between both regions thus writes:

h∞
L2

x

h̄x̄x̄ =
√

2
a

(4.11)

which finally leads to h∞ = 0, 94.a.Ca2/3.
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4.3. Theory for the coating by an elastic sheet.
The theoretical approach we use to evaluate the film thickness h∞ deposited by an elastic
membrane is similar to the LLD theory: We first focus on the flow in the small slope
region and then consider the matching with the shape of the elastic meniscus.
Concerning the flow in the small slope region, the equation of mass (4.5) remains un-
changed whereas the equation of Stokes simplifies:

µ∆U = gradp (4.12)

We work here in the low gravity limit ρgh2
∞/µV � 1. The pressure is deduced from

the continuity of stresses at the solid-liquid interface, the projection of which along the
normal n writes in the stationnary limit [Hosoi and Mahadevan (2004)]:

−p +
(
τ .n

)
.n =

Eb (1− ν)
(1 + ν) (1− 2ν)

γhxx −Bhxxxx (4.13)

where γ is the in-plane elastic strain, Bhxxxx the bending contribution. In the working
domain, the mylar sheets we use do not experience any elongation and we thus take the
limit γ = 0. In this limit, the pressure at the solid-liquid interface reduces to p = B.hxxxx

(instead of p = p0−σ.hxx for the LLD problem). This expression for the pressure, together
with the zero velocity condition at the membrane, enables the integration of the Stokes
equation (4.12) along the x direction, which leads to:

h 〈u〉 =
1
2
hV − B

12µ
h3hxxxxx (4.14)

Using h∞ to scale the thickness and Lxe = h∞/Ce1/5 (Ce ≡ 6µV h2
∞/B) to scale the

lengths along the x direction, we obtain the nondimensional (and parameter free) version
of equation (4.14):

d

dx̄
h̄x̄x̄x̄x̄ =

h̄− 1
h̄3

(4.15)

This equation is "similar" to the one obtained in the LLD theory (4.10) and must be
solved with the same limit condition : h̄(x̄ = +∞) = 1. Looking for an asymptotic
function h̄(x̄) = 1 + ε(x̄), we get ε(x̄) = Aie

αix̄, where α5
i = +1. Among the five so-

lutions of this equation presented on figure 7-(a), only two (α3 and α4) lead to van-
ishing function at x̄ = +∞. The asymptotic function for h̄(x̄) thus writes: h̄(x̄) =
1 + A.ecos(4π/5).x̄. cos[sin(4π/5).x̄] + B.ecos(4π/5).x̄. sin[sin(4π/5).x̄], where A and B are
two constants. This asymptotic function is used to provide the five initial conditions
needed to integrate equation (4.15). The evolution of the film thickness h̄(x̄) obtained by
numerical integration is presented on figure 7-(b), for different couples of constant A and
B. In the limit x̄ → −∞, the thickness of the film increases and we deduce from equation
(4.15) that the reduced fourth derivative h̄x̄x̄x̄x̄ must become constant. As for the LLD
problem, the value of this constant must be deduced by matching with the shape of the
elastic meniscus.
The elastic meniscus is described by the Elastica equation [Landau and Lifchitz (1967)]:

d2θ

ds2
= −F

B
sin θ (4.16)

where θ(s) is the local angle presented on figure 3-(b), s the curvilinear coordinate (s = 0
at the clamping location) and F is the intensity of the force exerted by the solid surface
on the elastic sheet (by unit width). Equation (4.16) must be solved with the two limit
conditions: θ(s = 0) = 0 and dθ/ds(s = L) = 0. This integration shows that F is related
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Figure 7. (a) visualisation on the unit circle of the five solutions of the equation α5
i = +1. (b)

evolution of the reduced thickness h̄(x̄) obtained through the numerical integration of equation
(4.15) with different values of the constants A and B: A = 3.355, B = 0 (�), A = 0, B = 29.267
(�) and A = 7.803, B = 10 (•). (c) evolution of the reduced third derivative h̄x̄x̄x̄(x̄) obtained
through the numerical integration of equation (4.15) with different values of the constants A and
B: A = 3.355, B = 0 (�), A = 0, B = 29.267 (�) and A = 7.803, B = 10 (•). (d) evolution of
the reduced fourth derivative h̄x̄x̄x̄x̄(x̄) obtained through the numerical integration of equation
(4.10) with different values of the constant A: A = 0.1 (�), A = 1 (�) and A = 10 (•).

to the reduced distance y0/L and for y0/L = 0.44, we find F = 3, 43. B/L2. In this
limit, where θ(L) = π/2), we observe that equation (4.16) can be expanded in s = L as:
hxxx = −F/B and hxxxx = 0. The constant for the matching is thus null and the free
parameters A and B must be chosen to verify this condition. This condition is fulfilled
for the three couples used to integrate numerically equation (4.15), as shown on figure
7-(d).
Since hxxxx = 0, one deduces that hxxx is constant and the matching can be done on
the third derivative. According to figure 7-(c) the limit h̄x̄x̄x̄ = −0.832 and the matching
with the Elastica gives:

−0.832
h∞
L3

xe

= −3.43
L2

(4.17)

From which we deduce:

h∞ = 0, 65. L

(
µV L2

B

)3/4

(4.18)

The comparison between the measured thickness h∞ and the theoretical characteristic
length L.

(
µV L2/B

)3/4 is shown on figure 8 for all the different experimental conditions
presented on figures 5. We observe that the measured thickness is a linear function of the
theoretical thickness with a coefficient of proportionality of 0.065, different from the 0.65
expected from equation (4.18). This difference comes from the fact that we have assumed
in our model that all the liquid entrained by the solid surface goes into the coating film.
The experiments tell us that this is not the case and that some recirculation must take
place in the reservoir.

5. Conclusion
We have conducted a series of experiments on the coating of a flat solid surface by an
elastic sheet. Experimentally, we show that the film thickness, h∞, is very sensitive to the
shape of the membrane [figure 4-(a)]. For a fixed shape (y0/L = 0.44), we show that the
thickness follows the law h∞ ≈ 0.065L Ce3/4, where Ce ≡ µ.V.L2/B. Theoretically, we
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Figure 8. Evolution of the film thickness h∞ as a function of the characteristic length
scale L.(µ.V.L2/B)3/4: experimental points presented in figures 5 (�), best fit (solid line)
h∞ = 0.065L.Ce3/4.

recover this scaling through an extension of the LLD theory and show that the maximal
film thickness is h∞ = 0.65L Ce3/4. The recirculation in the region in front of the wiper
must be considered to reach the experimental prefactor.
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