

Nichol et al, PRL 104 078302 (2010)

Foam

Gas (nitrogen) + Liquid (water & glycerol) + Surfactant (soap)

Soft materials: Hybrids, solid/liquid

Weird solid: Elasticity of Foams

Weird liquid: Rheology of Foams

A M Kraynik Annu. Rev. Fluid Mech. 20 325 (1988) H M Princen J. Colloid Interface Sci. 91 160 (1983) H M Princen and A D Kiss J. Colloid Interface Sci. 112 427 (1986) Makse et al

Unjamming at $\phi = \pi/(2 \text{ sqrt } 3) \approx 0.91$ Z=6 Elasticity Independent of Wetness Compression ~ Shear: K~G~k (2D)

A M Kraynik Annu. Rev. Fluid Mech. 20 325 (1988) H M Princen J. Colloid Interface Sci. 91 160 (1983) H M Princen and A D Kiss J. Colloid Interface Sci. 112 427 (1986) Makse et al

A M Kraynik Annu. Rev. Fluid Mech. 20 325 (1988) H M Princen J. Colloid Interface Sci. 91 160 (1983) H M Princen and A D Kiss J. Colloid Interface Sci. 112 427 (1986) Makse et al

Unjamming at $\phi \approx 0.84$

Z from 4 to 6

Elasticity Depends on Wetness

Compression ≠ Shear

F Bolton and D Weaire, Phys. Rev. Lett. 65 3449 (1990)

F Bolton and D Weaire, Phys. Rev. Lett. 65 3449 (1990)

Flow and Disorder: Experiments

Gijs Katgert, Matthias Möbius & MvH, PRL 101 058301 (2008); PRE 79 066318 (2009)

Foams and Disordered Media

Solid/liquid

Weird solid

Weird liquid

Simple Model for Disordered Jammed Matter

Disordered Packings Purely Repulsive Purely Mechanical (T=0)

CS O'Hern et al, PRE 2003

Simple Model for Disordered Jammed Matter

Simple Model for Disordered Jammed Matter

What are mechanical properties as function of P?

CS O'Hern et al, PRE 2003

Scaling near Jamming: Contact Number

Contact Number in 2D Foams

\$\$\overline{4}\$: Density\$\$z\$: Contact number

G Katgert and MvH, EPL 92 34002 (2010)

Contact Number in 2D Foams

Contact Number in 2D Foams

G Katgert and MvH, EPL 92 34002 (2010)

Scaling near Jamming: Pressure

Scaling near Jamming: Pressure

Scaling near Jamming: Bulk Modulus

Scaling near Jamming: Shear Modulus

Scaling near Jamming: Shear Modulus

Scaling near Jamming: Shear Modulus

Affine

Floppy Networks

Elasticity Random Networks

Compression Jammed Packings is Special!

Ellenbroek et al, EPL 87 34004 (2009)

Local Probe: Relative Displacements

 $P(\alpha)$, $P(u_{//})$, $P(u_{perp})$

$P(\alpha)$: Shear

$P(\alpha)$: Shear

$P(\alpha)$: Shear

P(u): Shear

Ellenbroek et al, PRL 97 258001 (2006) / PRE 80 061307 (2009)

Jamming

Simple model: solid/vacuum

Marginal point: weird

Scaling away from marginal point: G ~ k sqrt(d ϕ)

Non-affinity:

Tomorrow: Flow near Jamming

MvH, J Phys Cond Matt 22 033101 (2010)
$P(\alpha)$: Compression

$P(\alpha)$: Compression

$P(\alpha)$: Compression

Flow of Foams: the Jamming Perspective

Flow and Disorder: Experiments

Gijs Katgert, Matthias Möbius & MvH, PRL 101 058301 (2008); PRE 79 066318 (2009)

Setup

Setup

Flow and Disorder: Experiments

Gijs Katgert, Matthias Möbius & MvH, PRL 101 058301 (2008); PRE 79 066318 (2009)

Flow and Disorder: Experiments

Gijs Katgert, Matthias Möbius & MvH, PRL 101 058301 (2008); PRE 79 066318 (2009)

Jamming and Rheology: Commonalities

Strong Fluctuations Govern Elasticity Near Jamming

..... So What Governs Anomalous Rheology?

Anomalously Strong Fluctuations!

Anomalous Fluctuations: Experiments

M Moebius, G. Katgert, MvH EPL 90 44003 (2010)

Connect Jamming, Fluctuations & Rheology

BP Tighe et al, PRL 105 088303 (2010)

Microscopic Model

No inertia, force balance at all times

Doug Durian 1995 (Bubble Model), Olsson & Teitel, Langlois, Tighe,

Rheology: Viscous vs Elastic Stresses

Rheology: Elastic Stresses

Microscopic Model

BP Tighe et al, PRL **105** 088303 (2010)

Microscopic Model

BP Tighe et al, PRL **105** 088303 (2010)

Power in = Power out

Ono IK, Tewari S, Langer SA, Liu AJ, PRE 67 061503 (2003)

 $<\Lambda v^2>$ \sim

Ono IK, Tewari S, Langer SA, Liu AJ, PRE 67 061503 (2003)

$$\sigma \dot{\gamma} \sim \langle \Delta v^2 \rangle$$

$$\sigma \dot{\gamma} \sim \langle \Delta v^2 \rangle$$

$$\dot{\gamma}_{3/2} \sim \langle \Delta \mathbf{v}^2 \rangle$$

 $\Delta \mathbf{v} / \dot{\gamma} \sim \dot{\gamma}^{-1/4}$

$$\sigma \dot{\gamma} \sim \langle \Delta v^2 \rangle \qquad \overleftarrow{p}_{10^2} \qquad 10^1 \qquad 10^0 \qquad 10^0 \qquad 10^0 \qquad 10^{-1} \qquad \Delta v / \dot{\gamma} \sim \dot{\gamma} \cdot 1 / 4 \qquad 10^{-2} \qquad 10^$$

$$\frac{10^{2}}{10^{2}} + \frac{10^{2}}{10^{4}} + \frac{10^{2}}{10^{5}} + \frac{10^{2}}{10^{6}} + \frac{1$$

 $\sigma \dot{\gamma} \sim < \Delta v^2 >$

BP Tighe et al, PRL 105 088303 (2010)

Energy:
$$\sigma \dot{\gamma} \sim \langle \Delta v^2 \rangle$$

Strain: $\gamma_{eff} = \Delta \phi + \dot{\gamma} / \Delta v$
Stress: $\sigma = [(\Delta \phi)^{1/2} + |\gamma_{eff}|] \gamma_{eff}$

the second second

Test 1:
$$\sigma/\Delta\phi$$
 as function of $\gamma_{eff}/(\Delta\phi)^{1/2}$

Test 1: $\sigma/\Delta\phi$ as function of $\gamma_{eff}/(\Delta\phi)^{1/2}$

Energy:
$$\sigma \dot{\gamma} \sim \langle \Delta v^2 \rangle$$

Strain: $\gamma_{eff} = \Delta \phi + \dot{\gamma} / \Delta v$
Stress: $\sigma = [(\Delta \phi)^{1/2} + |\gamma_{eff}|] \gamma_{eff}$

Test 2: Solve for Rheology

Energy:
$$\sigma \dot{\gamma} \sim \langle \Delta v^2 \rangle$$

Strain: $\gamma_{eff} = \dot{\gamma} / \Delta v$
Stress: $\sigma = \begin{bmatrix} |\gamma_{eff}| \end{bmatrix} \gamma_{eff}$

$$\begin{array}{l} \Delta \phi \ \text{very small} \\ \sigma \sim \gamma_{\text{eff}}^{2} \sim (\dot{\gamma} / \Delta \mathbf{v})^{2} \sim \dot{\gamma}^{2} / \sigma \dot{\gamma} \sim \dot{\gamma} / \sigma \\ \sigma \sim \dot{\gamma}^{1/2} \end{array}$$

Energy:
$$\sigma \dot{\gamma} \sim \langle \Delta v^2 \rangle$$

Strain: $\gamma_{eff} = \Delta \phi$
Stress: $\sigma = [(\Delta \phi)^{1/2}] \gamma_{eff}$

$$\Delta \phi >>> \dot{\gamma}$$

$$\sigma \sim (\Delta \phi)^{3/2}$$

$\sigma/\Delta\phi$ as function of $\dot{\gamma}/(\Delta\phi)^2$

$\sigma/\Delta\phi$ as function of $\dot{\gamma}/(\Delta\phi)^2$

$\sigma/\Delta\phi$ as function of $\dot{\gamma}/(\Delta\phi)^2$

Other Systems: Critical Regime

Disorder: Local drag exponent \rightarrow Global drag exponent

OK	1	0.5
OK	α=2/3	$2\alpha/(\alpha+3)=4/11 \approx 0.36$
OK	0	0

n optimally, we find that k syste
, but for
$$\beta = 0.36 \pm 0.05$$
, this s
nimized. We find that for $\alpha = 0$
Other Systems: Critical Regime

Disorder: Local drag exponent \rightarrow Global drag exponent OK 1 0.5 2/3 0.36 0 0

Elastic Interactions also Matter Nipa (Gollub, Durian, PRL 2010) We: 1/2, 2, 4 Data:

P -

0

Foams from a Jamming Perspective

