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David Quéré* and EÄ lie Raphaël
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In experiments of capillary rise, oscillations of the liquid column can occur, as recently reported for
liquids of low viscosity (Europhys. Lett. 1997, 39, 533). Here we analyze these oscillations (criterion of
existence, shape, and damping). We start with an ideal fluid for which the oscillations are found to be
indefinite and parabolic. Then, we take into account the dissipation at the entrance of the pipe: it is shown
that it implies a different equation of motion depending on the direction of the liquid column (rise or fall).
The first rise remains of parabolic shape, but a dissymmetry is found between this rise and the fall. Finally,
the classical viscous friction inside the pipe is incorporated in the description and shown to accelerate the
damping.

1. Presentation

If at t ) 0 a small tube of radius r is put in contact with
a wetting liquid (of surface tension γ, density F, and
viscosity η), the liquid rises in the tube up to a height z0,
where the capillary force (F ) 2πrγ) balances the weight
of the liquid column (πr2Fgz0, with g the gravitational
acceleration). The dynamics of the rise is often dominated
by the viscous friction of the liquid in the tube and
described by Washburn’s law:1 (i) at the beginning of the
rise (z , z0), the meniscus position z increases with time
as xt; (ii) when approaching z0, the column height z
relaxes exponentially.

We have recently observed with a high-speed camera
the rise of liquids of small viscosities.2 The following two
points were observed: (i) The beginning of the rise is linear
in time, which was explained by considering inertia; if
balanced with the capillary force F, it yields a constant
rising velocity c (c ) (2γ/Fr)1/2, typically 20 cm/s, as observed
experimentally). This regime has also been described in
microgravity experiments by Dreyer et al. for liquids
invading Hele-Shaw cells.3 (ii) Oscillations around z0 can
occur if the viscosity is small enough. Such observations
are reported in Figure 1, for ether (γ ) 16.6 mN/m,
F ) 710 kg/m3, and η ) 0.3 mPa‚s) rising in a glass tube
of radius r ) 689 µm. The meniscus position is plotted
versus time, in dimensionless units: z has been scaled by
z0 and t by τ ) z0/c (z0 and τ are respectively 7.3 mm and
28 ms in the experiment). Oscillations are clearly visible,
before damping due to the liquid viscosity and stopping
at the height of capillary rise.

Here we try to understand these data. We start from
an ideal liquid, for which it is shown that parabolic
oscillations are expected. Then, we successively examine
two causes of dissipation: energy loss at the entrance of
the pipe and viscous friction inside it. A numerical
integration of the equation of motion is performed, but we
mainly stress some limiting cases (realistic from an

experimental viewpoint) where analytical laws can be
derived. We also propose a criterion for the existence of
oscillations.

2. Ideal Rebounds
The total energy of a liquid column of height z is the

sum of its kinetic, gravitational, and surface energies. It
can be expressed in the same dimensionless units as above:

where z̆ denotes the meniscus velocity. At rest (z̆ ) 0), the
minimum of E gives the equilibrium position, which is of
course z ) 1.

If the liquid viscosity is zero, E is conserved and its
value is E ) 0 (since at t ) 0 we have z ) 0). Then, eq 1
can be integrated once. The dynamic law z(t) for the height
of the meniscus is found to be parabolic:
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Figure 1. Capillary rise experiment for ether (γ ) 16.6 mN/m,
F ) 710 kg/m3, and η ) 0.3 mPa‚s) rising in a glass tube of
radius r ) 689 µm (capillary rise height is z0 ) 7.3 mm). The
points are experimental data, obtained by a direct observation
with a high-speed camera. The height z (scaled by z0) is plotted
versus time t (scaled by τ ) z0/c, where c is the inertial velocity
of imbibition defined in the text; for ether in this tube, we have
τ ) 28 ms).
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Then, at t ) 4x2, the liquid column is in the same state
as that at t ) 0 (when it comes back to z ) 0, it has no
inertia, since it has no mass), so that it follows a similar
parabolic trajectory. A wetting liquid put in contact with
a tube indefinitely oscillates in this tube (transforming
surface energy in kinetic and gravitational energies, and
vice versa), as noticed by Tabor.4 These oscillations are
parabolic, because of the nonconstant mass of the oscil-
lator, and the height varies from 0 to 2 during half a period,
which is T1/2 ) 2x2. This ideal regime is plotted in Figure
2.

The experiments indeed show oscillations (and during
the first half period, z(t) is parabolic), but the maximal
height is much lower than z ) 2. Besides, after the first
maximum is reached, the liquid column does not fall to
zero. Even if the viscous friction along the tube does not
play an important role in this first regime, we now show
that another source of dissipation can explain these
behaviors, while conserving the parabolic behavior close
to t ) 0.

3. Equations of Motion
Even for a liquid of negligible viscosity, some energy is

dissipated because of the singular pressure loss5 at the
entrance (if the liquid rises) or at the exit (if it goes down).
The reason is that there is an abrupt contraction between
the reservoir and the pipe (in the experiment, the ratio
of sections is of order 10-4), as noticed by Szekeley.6 Then,
it is well-known that balancing the rate of momentum
with the force and writing the Bernoulli equation do not
lead to the same result: considering that energy is
conserved (the Bernoulli equation) underestimates the
pressure drop.7 Physically, this irreversible loss of energy
is due to eddies forming on the sides of the tube entrance.

If the ratio of the section of the tube over the section of
the reservoir is close to zero, the pressure loss tends to a
very simple expression which is (still in dimensionless
units)5

Thus, the energy dE lost for a displacement dz of the liquid
column is simply equal to the kinetic energy of the liquid
entering (or leaving) the tube. But the key point is the fact
that this energy loss does not have the same expression
when the liquid rises (dz > 0) or when it goes down
(dz < 0). It is respectively written

during the rise and

during the fall; thus, dE is negative in each case, as it
must be. The latter equation is rather unusual in capillary
“rise” experiments because, in order to apply it, it requires
a downward motion of the liquid (or a fall), indeed observed
in Figure 1 after the first maximum. Physically, eq 4b
expresses the fact that the kinetic energy of the liquid
column is lost in the (infinite) reservoir during the fall.

If viscous friction is present inside the tube, there is
also a loss of energy for a displacement dz, which is
classically given by the Poiseuille-Hagen law:

where Ω is a dimensionless number proportional to the
liquid viscosity η (Ω ) 8x2ηγ1/2r-5/2F-3/2g-1). Of course, eq
5 is valid whatever the direction the liquid column moves
(dE is always negative, since dz and z̆ always have the
same sign). Finally, putting together eqs 1, 4, and 5 yields
the equation of motion, which has a different expression
depending on the direction of the liquid:

4. Nearly Ideal Rebounds
4.1. First Steps. During the first steps after the contact,

the parabolic Poiseuille-Hagen profile assumed to derive
the friction term (eq 5) is not yet established. Thus, we
shall consider Ω ) 0 in all this section. This regime should
last for the time necessary for setting-up the Poiseuille
profile inside the pipe, that is for the boundary layer to
diffuse on a length of order r, the pipe radius. This time
dimensionally writes τ* ∼ Fr2/η, and the numerical
coefficient, evaluated by Schiller, is of order 0.115.8
Calculated for the data, it is about 130 ms (or 4.6 in
dimensionless units), which indeed corresponds in Figure
1 to the time scale below which the column develops the
first oscillation.

For Ω ) 0, the equations for the motion (eqs 6a and 6b)
can be integrated once. We find

for the rise and

for the fall (A and B are two constants of integration).
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Figure 2. Rebounds in a capillary tube put in contact with an
ideal fluid (no dissipation of any kind). The height z of the
liquid column (scaled by z0) is plotted versus time t (scaled by
z0/c, where c is the inertial velocity of imbibition). Conservation
of energy implies parabolic oscillations (eq 2) of height 2 and
period 4x2 (about 5.6).
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4.2. Parabolic Rise. If the meniscus position is z ) 0
at t ) 0, A is fixed (A ) 0) and the relation between the
velocity and the position can be specified. In this particular
case, it follows a parabolic law (z̆ ) ( (1 - 2z/3)1/2).
Furthermore, the particular value A ) 0 makes a second
integration possible. A solution of remarkable simplicity
is found for the position as a function of time:

As in eq 2, the first half oscillation is a parabola, of
maximum height 1.5 (instead of 2) and duration 3 (instead
of 2x2), in qualitative agreement with the data of Figure
1. The starting velocity is 1 (instead of x2 in eq 2). A
remarkable point is that the same result is obtained if
inertia is balanced with the forces acting on the liquid
column (the capillary force minus the weight).2 It is written

where V is the meniscus velocity (V ) z̆) and M is the mass
of the column, which is proportional to z. Introducing the
same scaling for z and t as above, eq 9 reduces to eq 6a
(with Ω ) 0).

A question of interest is the way the liquid column “finds”
the parabolic solution. When touching the liquid surface
with a capillary tube, both the height and the velocities
are zero, whereas eq 8 implies a velocity 1 for t ) 0. Close
to contact, both the viscous term and the weight (the z
term in eq 6a) can be ignored, so that the equation of
motion is

Equation 10 has no solution satisfying z ) z̆ ) 0 at t ) 0,
because of the singularity at z ) 0. Close to the origin (z
f 0), the solution satisfying z(0) ) 0 is z ) t, as mentioned
in section 1. On the other hand, if we look for a solution
of zero initial velocity, we must introduce an initial position
a at t ) 0. The corresponding solution is z(t) ) (a2 + t2)1/2.
In this case, the regime of constant velocity z̆ ) 1 is reached
in a time of order a, after a regime of pure acceleration:
close to t ) 0, we have z(t) ≈ a(1 + t2/2a2).

4.3. Oscillations. After reaching its maximum height
z ) 1.5, the liquid column goes down following eq 7b. The
solutions cannot be expressed analytically any more, and
each portion of the trajectory must be calculated numeri-
cally. However, the extrema for z can be obtained by simple
recurrences. At these points, the velocity is zero, and we
get from eqs 7

for the rise and

for the fall. Starting from z ) 0, we obtain as a series of
extrema 1.5, 0.63, 1.30, 0.75, 1.21, 0.81, and so on. In
Figure 3a, the extremal heights b are plotted as a function
of the starting height a for each sequence of events (rise
or fall). On each axis, z < 1 corresponds to the rise and
z > 1 to the fall. In the same picture, a simple construction
is presented, which allows a visualization of the column
trajectory (and of the damping), starting from z ) 0, as
in the experiments. The damping due to the pressure loss

at the entrance (or exit) of the tube is rather soft: it is
easy to show that the envelope of z(t) is a hyperbola,
decreasing like 3π/2t. For classical viscous damping, this
envelope is an exponential, of short range, and thus
possibly able to prevent oscillations from occurring, as
usually observed.

The times corresponding to the successive rises and
falls, or half-periods T1/2, can also be calculated. They are
plotted in Figure 3b as a function of the initial height a.
For example, starting from z ) 0, we find T1/2 ) 3, as
expressed in eq 8. It is the only value which can be
calculated analytically, together with what happens close
to the equilibrium value (z ) 1). There we read in Figure
3b: T1/2 ) π. For such small oscillations, eqs 7a and 7b can
be linearized. Setting z ) 1 + ε (with ε , 1) yields
ε̈) - ε. Thus, left close to equilibrium, the column oscillates
sinusoidally with a period T ) 2π.

Finally, the solution of eqs 7a and 7b can be calculated
and drawn (Figure 4, with Ω ) 0). All the different features
stressed above (long-range damping, dissymmetry be-
tween the rise and the fall, existence of asymptotic
analytical solutions for t f 0 and t f ∞) can be observed
in this plot. But some discrepancy remains when compar-
ing with the data in Figure 1, so that we we now have to
treat the whole problem, including viscous friction inside
the tube.

5. Viscous Fluids

5.1. Short-Time Behavior. Though eq 8 predicts the
observed parabolic rise of the column, it overestimates
the maximum height: 1.3 is observed in Figure 1 instead
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Figure 3. Nearly ideal rebounds (dissipation occurring only
at the entrance of the tube), as a function of the initial position
a: (a, top) Position b of the liquid column after half a period
(i.e. a rise or a fall); the arrows indicate what happens versus
time starting from a ) 0. (b, bottom) Half the period of oscillation
T1/2. Both curves are drawn with the same dimensionless units
as above and considering a zero initial velocity.
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of the predicted value 1.5. This difference can be inter-
preted as a local effect of the viscosity: the boundary layer
develops from the contact line, so that viscous dissipation
immediately takes place close to it, forcing the liquid wedge
to join the solid with a nonzero dynamic contact angle
θ(z̆). Thus, the driving force is smaller than that considered
up to now: on the right-hand side of eq 10, 1 must be
replaced by cos θ, providing a rising velocity close to the
beginning of (cos θ)1/2 instead of 1.

Hoffman showed that θ is determined by the capillary
number (Ca ) η/γ).9 In the experiment, the starting
velocity is c ) 23 cm/s, which gives Ca ) 2 × 10-3. From
Hoffman’s curves, θ can be evaluated to be around 30°
(rather small because of the small viscosity of ether), from
which the dynamics of the rise is deduced. Integrating eq
6a with an effective (and constant) driving force of cos θ
(instead of 1) and still considering Ω ) 0, we obtained a
parabolic rise in close agreement with the data (in
particular with a maximum at z ) 1.3). Hence, for t < τ*,
it can be considered that the whole liquid column is inertial
while viscosity only acts locally on the contact angle,
imposing a lower starting velocity.

5.2. Condition for Oscillations. For t > τ*, viscosity
acts on the whole column. The Poiseuille viscous force
cannot be neglected any more and the whole eqs 6a and
6b must be considered. Depending on the value of Ω (which
is proportional to the liquid viscosity), different behaviors
are expected; in particular, the case of a very large Ω
corresponds to Washburn’s analysis. We first look for the
condition for which oscillations are likely to be observed.
Close to the threshold in Ω and at the position where an
oscillation appears, z can be linearized; setting z ) 1 + ε
(ε , 1), we find for both eqs 6a and 6b ε̈ + Ωε̆ + ε ) 0,
which leads to oscillations if Ω < 2. In our experiment for
example, this criterion is largely fulfilled, since we have
Ω ∼ 0.2. A dimensional condition on Ω can also be derived
by comparing the time τ necessary for the column to pass
the capillary rise height z0 with a velocity c (τ ∼ z0/c) with
the time for setting a Poiseuille flow τ*∼ Fr2/η: oscillations
are expected if τ < τ*, hence for Ω smaller than a number
of order unity.

5.3. Viscous Damping.Equation 6 can be finally solved
numerically, with the initial conditions specified above
(z ) a and z̆ ) 0). Solutions are drawn in Figure 4 for
a ) 0.001 and different values for Ω (0, 0.3, and 2). For
Ω ) 2, it is indeed observed that there is no oscillation
(the most frequent situation in practice, valid for small
pipes or large viscosities). If increasing Ω, the curve would
gradually tend toward Washburn behavior, with smaller
and smaller inertial corrections. An estimate for these
corrections was proposed by some authors to explain
deviations from Washburn’s law observed close to the
origin (z ) 0).6,10 An idea for example was to consider the
flow inside the reservoir which supplies the tube. The size
of the concerned region is of order r (it is limited in space
because the fluid velocity in the reservoir quickly falls
with distance x from the tube entrance, as x-2). Thus, the
correction related to this flow consists of adding a term
of order r/z0 (0.09 in our experiment) to z, in the right
member of eq 10.6 The numerical solution is found to be
very close to the previous one, because of the modest role
of the term z, in particular during the starting stage of the
column.

In the case we are interested in here (Ω < 2), oscillations
indeed develop. Slight shifts of the half-period can be
observed, a consequence of the dependence of T1/2 on the
amplitude (Figure 3b). More quantitatively, the curve
Ω ) 0.3 is found to be in excellent agreement with the
data (for which we rather have Ω ) 0.2): both the position
of the extrema and the visible dissymmetry between the
rise and the fall are described. Thus, considering as sources
of dissipation both the loss at the entrance of the pipe and
the viscous friction inside it allows us to describe the data.

6. Conclusion
We have interpreted our data on rebounds in capillary

rise by considering the time τ* necessary to set up the
Poiseuille profile in the tube.

(1) Before τ*, the liquid column behaves “nearly ideally”.
(a) During the rise, the position of the meniscus follows
a parabolic law as a function of time which can be
understood very simply (eq 8). As a little correction to this
simple model, we took into account the existence of a
dynamic contact angle at the liquid front, whose effect is
to slow the liquid column. (b) The fall is not parabolic any
longer because the equations of motion are not the same,
depending on the column direction (eqs 6a and 6b). This
dissymmetry comes from the fact that the pressure loss
at the place where the tube meets the reservoir is quadratic
in velocity. As a remarkable point, the equations for the
motion can be integrated once, despite the existence of a
source of dissipation: equations looking like equations of
conservation are obtained (eqs 7a and 7b), from which all
the “nearly ideal” oscillations can be described (for
example, graphically).

(2) Above τ*, viscous friction along the liquid column
must be considered. The threshold in viscosity above which
oscillations disappear was calculated. Below this thresh-
old, oscillations are damped (as seen from a numerical
integration of eqs 6). The dissymmetry between the rise
and the fall is still visible and softens as the oscillations
are damped. Then, the motion stops.
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Figure 4. Dynamics of the liquid column (same dimensionless
coordinates as above), obtained by integrating eqs 6 (taking as
initial conditions a ) 0.001 and z̆ ) 0). Ω ) 0 is the so-called
“nearly ideal” case (the viscous friction is neglected inside the
tube). Ω > 0 corresponds to real fluids: then, the damping is
quicker, because of the viscous friction inside the tube. The
curve Ω ) 0.3 (thick line) closely agrees with the data of Figure
1; Ω ) 2 is the critical damping from which oscillations
disappear.
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