Fluid•DTU seminar, Tuesday, Sep. 29, 2009, at 11:00, Bldg. 306 Aud. 34

/-/media/c87553e7745542c2bac5b590200f03c8.jpg

 Stability of relative equilibria of three vortices

 

 Hassan Aref 

 FluidDTU, Denmark, and 

 Virginia Tech, USA 

 

 

 

 

Abstract:

 

Three point vortices on the unbounded plane have relative equilibria wherein the vortices either form an equilateral triangle or are collinear.  While the stability analysis of the equilateral triangle configurations is straightforward, that of the collinear relative equilibria is considerably more involved.  The only comprehensive analysis available in the literature, by Tavantzis & Ting [Phys. Fluids, 31, 1392 (1988)], is not easy to follow nor is it very physically intuitive.  The symmetry between the three vortices is lost in this analysis.  I will provide a different analysis based on explicit formulae for the three eigenvalues determining the stability, including a new formula for the angular velocity of rotation of a collinear relative equilibrium.  A graphical representation of the space of vortex circulations is introduced, and the resultants between various polynomials that enter the problem are used.  This approach adds considerable transparency to the solution of the stability problem and provides more physical understanding.  The main results are summarized in a diagram that gives both the stability or instability of the various collinear relative equilibria and their sense of rotation.